
HE\,VLETT.PACKAFID

*,@[JRNTAL DECEMBEFI 1989

PIT !FYhTJ

HEWLETT.PACKAFID

",@[JRNTAL December 1989 Volume 40. Number 6

Articles

1l System Design for Compatibility of a High-Performance Graphics Library and the
(J XWinOowSystem, byKennethH.Bronstein,DavidJ. Sweetser, andWil l iamR.Yoder

7 The Starbase Graphics Package
8 The X Window System

11 Starbase/Xl1 Merge GlossarY

{ ,1 Managing and Sharing Display Objects in the Starbase/Xl 1 Merge System, by James
| 1 n. Andreas, Robert C. Cline, and Courtney Loomis

1.)n Sharing Access to Display Resources in the Starbase/Xl 1 Merge System, by Jeff
/U a. Bovton. sankar L. chakrabarti, steyen P. Hiebert, John J. Lang, Jens R. Owen, Keith A.

Marc'hington, Peter R. Robinson, Michael H' Stroyan, and John A. Waitz

r)r) Sharing Overlay and lmage Planes in the Starbase/Xl1 Merge System, by Steven
rJr.J p. Hiebert, John J. Lang, and Keith A. Marchington

38Sharing Input Devices in the Starbase/Xl 1 Merge System, by lan A. Eiliot and George
M. Sachs

39 X Input Rotocol and X Input Extensions

42""i:#:j;;ffi":::T,.H'0"'t'es
in the starbase/Xl1 Merse Svstem' bv lohn M'

Editor. Richard p. Dolan o Assocrate Editor. Charles L. Leath . Assistant Editor, Hans A. Toepfer o Art Director, Photographer, Arvid A. Danielson

Support Supervisor, Susan E Wright . Administrative Services, Typography, Anne S. LoPresti . European Production Supervisor' Sonja Wirth

2 HEWLETT,pAcKARD JoURNAL DEcEt,4BER 1989 o Hewlett Packard Companv 1 989 Printed in U.S A

En A compiled Source Access System Using cD-RoM and personal computers, by
\.r\it B. David Cathell, Michael B. Kalstein, and Stephen J. Pearce

E tl Transmission Line Effects in Testing High-Speed Devices with a High-Performance
r.,, (J Test System, by Rainer Plitschka

65 CMOS Device Measurement Results

7 4
Cuslom VLSI in the 3D Graphics Pipetine, by Larry J. Thayer

'/

$
ercOa lllumination Modeling Using Radiosity, by David A. Burgoon

Departments

4 ln this Issue
5 Cover
5 What's Ahead

47 Authors
57 Correction
67 1989 Index

The Hewlett-Packard Jou.nal is published bimonthly by the Hewlett-Packard Company to re@gnize ltrhnical conlributions made by Hewlett-Packard (HP) perennel. While
lhe information tound in this publicalion is believed to be a@urate, lhe Hewlett-Packard Company makes no warranties, express or implied, s to the accuracy or reliability of
suchin|ormation.TheHew|ett-Packardcompanydisc|aimsa||warrantieso|merchantabi|ityandftness'oraparticu|arpurpose
including but not limited to indirect, sp6ial, or @nsquential damages, attorney's and expert's fees, and court costs, arising out ol or in connection wilh this publication.

SubscriPtions: The Hewlett-Packafd Journal is distributed free ot charge to HP research, design, and manufacturing engineering per$nnel, as well as to qualified non-HP
individua|s,| ibraries,andeducationa|ins|itutions.P|ea$addresssubscriptionorchangeo
on the back @ver thal is closst lo you. When submitting a change of addres, please include your zip or postal code and a copy of your old label.

Submbslons: Although articles in the Hewlett-Packard Journal are primarily authored by HP employees, articles from non-HP authors dealing with HP{elated research or
solulions to lechnical problems made possible by using HP equipmenl are also considered for publication. Please contact the Editor before submitting such articles. Also, the
Hew|ett-PackardJourna|enmuragestochnica|discussionso'thetopicspresentedinrtentartic|esandmaypublishlettersexpectedtobeofinlereslto
be briet, and are subject to editing by HP-

Copyrighl O 1989 Hewlett-Packard Company. All rights reserved. Permission to copy without lee all or part ol this publication is hereby granted provided that 1) the copies
are not made, usd, displayed, or distributed for commercial advantage; 2) lhe Hewlett-Packafd Company copyright notice and the title ol the publication and date appear on
the copies: and 3) a nolice stating that the opying is by permission of the Hewlett-Packard Company appears on the copies. Otheruise, no portion ot this publication may be
producedortransmittedinanytormorbyanymeans'e|ectronicormechanica|,inc|udingphotocopying,re@rding'orbyanyin'ormationstoIa9el
permission ol lhe Hewletl-Packard Company.

Please address inquiries, submissions, and requesls to: Editor, Hewlett-Packard Journal, 3200 Hillview Avenue, Palo Alto, CA 91i}04, U.S.A.

DECEI\,1BER 1989 HEWLETT'PAC<nnO ..lOURuL 3

In this Issue
The Massachusetts Institute of Technology's X Window System, Version

11, has become an industry standard window system for supporting user
interfaces in networks of workstations running under AT&T's UNIX operating
system. In Hewlett-Packard terms, this means HP 9000 Series 300 and 800
workstations running under the HP-UX operating system. The X Window
System lets an application program running on one workstation display infor-
mation to a user sitting at any workstation in the network. HP 9000 Series
300/800 workstations also offer a high-performance 2D and 3D graphics
library called Starbase. Naturally, users wanted their application programs

to be able to use the Starbase graphics library and run under the X Window System. Unfortunately,
they couldn't do both at once. The two systems had been designed independently, and both

assumed exclusive ownership of the display and input devices. Furthermore, while many X

applications could be active in the network simultaneously, only one Starbase application could
run on a workstation. As a result of these differences, the two systems couldn't coexist. Working

out a solution to this problem required a joint effort of engineers at two HP Divisions, dubbed the

Starbase/X'l 1 Merge project. Merging the two systems was a nontrivial technical challenge. lt

had to be done without sacrilicing the performance of Starbase applications or requiring that they

be rewritten. As related in the article on page 6, it required changes to the architecture of both

systems, development of cooperating display drivers for the two systems, restructuring the interface

between the drivers and the X server process, and development of a facility to handle communi'

cation between the two systems. In other articles, you'll find details of the changes as they relate

to the management of graphics resources (page 12), access to display hardware (page 20), use

ol display memory (page 33), sharing of input devices (page 38), and modification of existing test

suites (page 42).
The capabil it ies of the Starbase graphics l ibrary include high-performance color rendering and

3D solids modeling. For determining the intensity of light reflected to the observer's eye from any

object, the library offers three illumination models---one local and two global. A local model

considers only the orientation of an object and light from light sources. A global model also

considers light reflected from or transmitted through other objects in the scene. The two Starbase
global illumination models are based on methods called ray tracing and radiosity. In the paper

on page 78, David Burgoon presents the mathematical foundations of the radiosity method and

compares its capabilities and limitations with those of the ray tracing method.
The Starbase graphics library runs on HP 9000 Computers equipped with the SRX or TurboSRX

graphics subsystems. The TurboSRX is an enhanced-performance version of the SRX design.

On page 74, Latry Thayer explains how analysis ol the data-flow pipeline of the SRX revealed

where custom VLSI chips could be used to improve the performance. He then describes three

chips that were designed to take advantage of these opportunities for the TurboSRX version.

4 HEWLETI-PACKARD JOURNAL DECEMBER 1989

For HP's commercial computer systems based on the HP 3000 Computer, the last resort in
troubleshooting usually involves analyzing a dump of the computer's memory. While powerful
tools have evolved for on-line dump analysis, unti l recently no parallel progress had occurred
that would allow efficient on-line examination of operating system source code. After f inding clues
in the memory dump, HP support engineers had to rely on a complex manual process to locate
specific source code in a printed l isting. Fortunately, this isn't true anymore. HP support facil i t ies
now have HP Source Reader, a system for accessing source code stored on compact disk
read-only memory, or CD-ROM. The source code is stored on the CD-ROM in a proprietary format
and is retrieved by an access program that runs on an HP Vectra Personal Computer and allows
relevant information to be popped onto the screen in seconds. On page 50, three of the system's
designers-support engineers themselves--iescribe HP Source Reader and present an example
of its use.

As integrated circuit clock rates and signal transitions have become faster and faster, it has
become necessary to treat even very short wires and printed circult board traces as transmission
lines. This means that impedance matching, reflections, and propagation delays are important
considerations. In automatic testers for such high-speed devices, transmission l ine techniques
must be applied to the tester-to-device interconnection if the device is to be tested at operating
speeds and accurate results are required. The paper on page 58 describes how this interconnection
is implemented in the HP 82000 lC Evaluation System to ensure high-precision measurements
even for difficult-to-test CMOS devices. A resistive divider arrangement makes it possible to test
low-output-current devices up to their maximum operating frequencies.

R.P. Dolan
Editor

Cover
This HP 9000 Series 300 display shows the results obtainable using a Starbase/X1 1 Merge

system display mode called combined mode. This mode takes advantage of the sophisticated
rendering capabilities of the TurboSRX 3D graphics accelerator, causing the two sets of display
planes-image and overlay-to be treated as one screen. The complex 3D images were rendered
in the image plane and the listing, the clock, the buttons, and the plot were rendered in the overlay
olane.

What's Ahead

The HP OSI Express card provides on one HP 9000 Series 800 l/O card the capabilities of the
network architecture defined by the ISO Open Systems Interconnection (OSl) Reference Model.
In the February issue, ten articles wil l provide insight into the OSI Express card implementation
of the model and will define what sets this implementation apart from other networking implemen-
tations. Also featured will be the HP 714004 Lightwave Signal Analyzer, which measures the
characteristics of high-capacity lightwave systems and their components, including single-fre-
quency or distributed feedback semiconductor lasers and broadband pin photodetectors. An
accessory, the HP 1 19804 Fiber Optic Interferometer, helps characterize the spectral properties
of single-frequency lasers.

DECEI\,1BER 1989 HEWLETT-PACKARD JOURNAL 5

System Design for Compatibility of a

Workstalion

High-Performance Graphics Library and
the X Window System
The StarbaselXl l Merge system provides an architecture
thatenables Starbase applications and XWindow Syslem
applications to coexisl in the same window environment.

by Kenneth H. Bronstein, David J. Sweetser, and William R. Yoder

P'S HIGH-PERFORMANCE 2D and 3D GRAPHICS
library called Starbase has proven very successful
in engineering workstation applications. Similarly,

The X Window System'* Version 11, or X11, has become

the de facto industry standard window system for support-

ing user interfaces on workstations connected across a net-
'n,ork.1'2 Both of these systems run in the HP-UX environ-

ment on the HP 9000 Series 300 and 800 Computer systems
(see boxes on pages 7 and B).

Before the Starbase/X11 Merge proiect, the X Window

System and Starbase graphics applications were not able

to run on the same display. An application could use either

the Starbase high-performance graphics or it could run in

the X Window System, but not both simultaneously. These

systems each make simple assumptions about ownership

of the display and input devices, and this makes them

unable to coexist. Since HP is one of the industry leaders

in the X Window System technology and Starbase is a

widely used graphics library, the Starbase/X11 Merge proj-

ect was started to design and implement a scheme whereby
X and Starbase applications could coexist on the same

display.
There were three major challenges associated with merg-

ing Starbase and X11. The first challenge was to change

the architecture of the Starbase graphics libraries and the

X Window System so that a Starbase application could run

within an X window with full functionality and with per-

formance comparable to Starbase running on a dedicated

fnonwindowed) display. The second important challenge

was to enable existing Starbase applications to relink sim-

ply with the new Starbase drivers and run in an X Window

System with no modifications to the application's source

code. The final malor challenge was to coordinate the de-

sign and development of this product over geographical

and organizational boundaries. The Starbase/X11 Merge

project was the joint effort of software engineers located at

HP's Graphics Technology Division (GTD) in Ft. Collins,

Colorado, and HP's Corvallis Information Systems Opera-

t ion (CIS) located in Corval l is, Oregon. The team in Col-

orado was responsible for the Starbase portion of the project

and the team in Corvallis was responsible for the X Window

System portion of the project.

This article and the next five articles in this issue describe

the design and implementation techniques used to handle

6 HEWLETT-pACKARD JoURNAL DEcEMBEB 1989

(a)

Othert t t ' c l i e n t c

Workstation

Fig. 1. lncompatible architectures. (a) The architecture for

an X application. (b) The architecture for a Starbase applica-
tion. Both architectures assume complete ownership of the

displav.

{----"r
I

;
l
I From
i lnPut
j Devices
I
I
I

- l

Clients

i, r{*----r
r.-=i+r I

f - ' ' - - l - . I
!-::1 ',, I

(b)

these chal lenges.

Design Alternatives
The architectures for a client (application) running in

the X environment and an application using Starbase are
shown in Fig. 1. The X Window System is network trans-
parent, which means that an application running on one
workstat ion can display i tself to a user sit t ing at the same
workstation or at another system across a network. Appli-
cations, or cl ients, running in the X Window System are
al lowed access to the display only through the X server,
which is a separate process that arbitrates resource conflicts
and provides display, keyboard, and mouse services to al l
appl icat ions accessing the display. Also, as shown in Fig.
1, many X applications can be served by the X server simul-
taneously. Starbase, on the other hand, is a col lect ion of
l ibraries and drivers for 2D and 3D graphics appl icat ions,
and only one Starbase application can run on the worksta-
t ion at a t ime.

In trying to merge Starbase and X,* we did not Iack
alternative solut ions. During the investigation stage there
was little doubt that we could change the architectures of
Starbase and X to coexist, but how to merge the two was
not clear. The design alternatives included:
r Fol lowing the exist ing HP Windows/9000 model of add-

ing window management utilities to the Starbase Ii-
braries.

r Implementing the X server on top of the Starbase
graphics libraries.

I Implementing the X server using an internal low-level
Starbase interface.

r Implementing an X driver for Starbase, using X Window
System Xlib cal ls.

r Writing an X extension that implements Starbase low-
level semantics.

r Developing Starbase and X drivers that cooperate in ac-
cessing the display hardware.
The project team selected the last alternative. This ap-

proach resulted in creating low-level drivers to support the
rendering requirements of both Starbase applications and
the X server, the restructuring of the server interface be-
tween the low-level drivers and the device-independent
portion of the X server, and the development of a facility
to handle communication between X and Starbase.

Low-Level Driver Redesign
The Graphics Technology Division manufactures a vari-

ety of display types with the following characteristics:
I On-screen resolutions that range from b12 by 400 pixels

to 1280 by 7O24 pixels.
I Display planes that range from 1 (capable of displaying

black and white) to 24 (capable of displaying any of 16
million colors, with every available pixel a different
colorJ.

I Advanced hardware features, such as 2D and 3D graphics
accelerators. Graphics accelerators provide graphics op-
erations such as polygon clipping, rotation, and other
transformations implemented in high-speed hardware.
To put the responsibility where the expertise lay and to

The X Window System is a trademark of the Massachusetts Institute of Technology.
.ln this and other articles X11 and X Window System will atso simplv be referred to as X.

The Starbase Graphics Package

Starbase is a l ibrary of ut i l i t ies lor drawing computer graphics.
It was f irst released in 1985, based on a dralt of the ANSI and
ISO standard Computer Graphics Interface, or CGl. Since i ts
f irst release, leatures have been added to Starbase that go
beyond the CGI standard. The l ibrary includes functions that
draw l ines, polygons, text, spl ines, circles, and arcs. l t includes
routines that read locations or button and key presses from input
devrces, and routines that echo the posit ion of an input device
on an arbitrary display.

An important goal of the Starbase product is to provide a l ibrary
of functions that can be used on a range of devices. Starbase
conceals the detai ls of devjce dependencies, al lowing each pro-
gram to be used with a growing l ist of devices without making
changes to the program. The current Starbase products support
over 20 dif ferent devices. They include workstat ion displays, plot-
ters, terminals, mice, and data tablets. New devices can be used
as they become avai lable by l inking a program with new device
drivers. This device independence is also used to assist the
development of other graphics l ibraries. lmplementations of l i -
braries for the ANSI standards Core Graphics System (CORE),
Graphics Kernel System (GKS), and Programmers Hierarchical
Interactive Graphics System (PHIGS) use the Starbase device
drivers to support the same range of devices.

The device independence of Starbase coexists with access
to the full features and maximum performance of each device
that i t works with. Common features, such as l ine and polygon
drawing, are supported direct ly on capable devices and emu-
lated on simpler devices. The more sophist icated features of
advanced displays, such as shaded images, are avai lable to
programmers that require these features, but not emulated on
simpler devices.

Starbase has features tuned to the needs of part icular groups
of customers. Some addit ions optimize str ict ly two-dimensional
graphics, such as tor printed circuit layout, electr ical design,
and draft ing. Functions have been added to Starbase to support
integer coordinates and transformalions that al low faster, more
cosfeffectrve display systems for these applications. Other ad-
dit ions emphasize three-dimensional images such as used for
advanced mechanicai design. Starbase supports perspective
views of ob.lects with shading simulat ing l ight sources, and draws
only those parts of an image that are not hidden behind sol id
objects. The most recent additions to Starbase provide photo-
real ism, the appearance of near real i ty, through ray tracing and
radiosity technologies. See the art icle on page 78 for more infor-
mation about radiosity.

accommodate all these display types, the engineers at GTD
implemented the new display drivers, and the engineers
at CIS implemented the code to translate X server semantics
into display driver formats. The interface between the dis-
play drivers and X was called the X driver interface, or
XDL XDI is discussed later in this article.

During the design investigation phases, we discovered
that many requirements of the Starbase environment and
the X server environment were similar and the basic al-
gorithms that use the hardware were the same. This led to
the concept of shared drivers between the X server and
Starbase applications. Originally we hoped that the drivers
could be shared at the obiect code level, that is, the drivers

DECEMBER 1989 HLWLLTT PACKABD uOURNAL 7

The X Window Svstem

The X Window System, commonly referred to as X, ts an indus-
try standard, network transparent window system. X presents to
the user a hierarchy of resizable overlapping wlndows providing
dev ce independent graphics. A graphical user nterface ts com-
monly included as an integral part of the X window system. The
X Window System definit ion is maintained by the Massachusetts
Inst i tute of Technology X Consort lum.

The f irst implementations of X were developed lolnt ly at MIT
by Project Athena and the Laboratory for Computer Science.
Project Athena was faced with the problem of writ ing software
for hundreds of displays from dif ferent vendors on machines al l
connected by a local area network. They designed X, based on
the W window system, which was the work of Paul Asente, Brian
Reid, and Chris Kent of Stanford University and Digital Equlpment
Corp .

The 1986 MIT release of X, Version 10.4, was the f irst version
with mult ivendor support. HP was among the f i rst computer man-
ufacturers worldwide to sel l X as a product when in March, 1987,
the company began shlpping the X Window System for HP-UX
In January 1988 the MIT X Consort ium was formed, with HP
being one of the founding members. X Consort ium members
include Apple Computer Inc., Ardent Computer, Amerlcan Tele-
phone and Telegraph lnc., Calcomp Inc., Control Data Corpora-
t lon, Digital Equipment Corporation, Data General Corporaton,
Fuj i tsu Microelectronics Inc., Hewlett-Packard, Internattonal Bus-
iness Machines Corporatlon, Eastman Kodak Corporation, NCR
Corporation, Nippon Electr ic Corporation, Prime Computer Inc.,
Si l icon Graphics, Sun Microsystems Inc., Tektronix Inc., Texas
Instruments Inc., Unisys, Wang Laboratories Inc., Xerox Corpo-
rat ion, and others.

The X Window System desrgners, Robert Scheiff ler of MIT and
Jim Gettys of Dig tal Equipment Corporation, adopted a set of
cri t ical design objectives, specifying that the window system
must:
r Work on a wide variety of hardware platforms and displays
r Faci l i tate implementation of device independent appl icat ions
! Be network transparent
r Al low for appl icat ion concurrency
! Support dif fering application and management interfaces
I Provide overlapping windows and output to obscured regrons

of windows
r Support a hierarchy of resizable windows
r Provide support for text, 2D graphics, and imag ng
r Be extensible.

Their implementatlon of this design has gone through a number
of revlsions. The implementation has stabi l ized at X version 11,
which has been adopted as an industry standard. The current
standards bodies that have adopted some port ion of X or are in
the process of adopting X include ANSI, IEEE, ISO (lnternational
Standards Organization), NIST (National Inst i tute of Standards
and Technology), OSF (Open Software Foundaton), and X/
OPEN. MIT has faci l i tated the acceptance of X as a standard by
distr ibuting the standards definit ion documents and the source
code of sample implementations for publ lc use for a nominal fee.

The X Window System consists of the X server, the standard
X l ibrary, various l ibrary toolkits, and a set of X cl lent appl icat ions.
r The X server controls access to display hardware and input

oevlces.
r The X l ibrary is the basic programmatlc lnterface providing a

standard method to manipulate windows, control input, handle
window system events, provide text output, manipulate color
maps, render 2D device coordinate graphics, and extend the
cl ient/server protocol.

r The X toolkits provide standard sets of widgets, menus, and
other user interface objects. The toolkits faci l i tate the develop-
ment of appl icat ions that have a consistent, easy to use,
graphical user interface

r A window manager is provided as a special X application.
The functional i ty of the window manager has been separated
from the lower-level X server and X l ibrary. This modular design
has al lowed dif ferent window managers and dif ferent user Inter-
{ace models to be incorporated in any user's X environment.

The X server and the X l ibrary communicate via an asynchron-
ous stream-based interprocess communication protocol. This
protocol separates the application interface from the X server
implementation. The X server can then be ported to new display
devrces without the need to modify the application programs.

Executable appl lcat ion code compatibi l i ty is maintained across
displays. This network protocol also provides the basis of network
transparency and interoperabi l i ty. Network transparency means
that an application running on one computer can perform al l
display and input operations for a user slt t ing either at the same
system or at another computer across the network. Network trans-
parency is provided at no cost to the application as part of the
standard X implementation. Interoperabi l i ty implies that network
transparency is preserved across various computer vendors'
products.

could be compiled once and l inked into both the X server

and Starbase programs. The data structure environments

and some of the rendering semantics of the two environ-

ments were too different to allow this, so the less restrictive

alternative of shared source code with conditional compi-

lat ion was chosen. This scheme enabled us to avoid chang-

ing existing Starbase Iibrary code and duplicating low-level

display control and rendering operations for different dis-

play types.

Restructuring the X Server
A sample implementation of the X server exists in the

8 newLerr-pncxnRD iouRNAt DEcEMBER 1989

public domain and is available from the Massachusetts
Institute of Technology (MIT). This sample implementation
has contributed greatly to the success of the X Window
System. The X server maintained by MIT provides X ven-
dors with a source code template from which X server
products can be developed. Starting with MIT's sample X
server, vendors can develop a version of the X server that
works on their hardware, The sample X server consists of
three major sections:
r Device Independent X (DIX). High-level device indepen-

dent code for handling cursors, events, extensions, fonts,
and rendering requests.

Device Dependenl X
(DDx)

X Driver
Interface (XDl)

Fig.2. The modules in the X server. The devtce dependent
module (DDX) shows the modifications made to accommo-
date the needs of the Starbaselxl 1 Meroe sysfem.

Operating System Dependent Interface. This section con-
tains utilities used primarily by DIX to perform tasks
specif ic to the host operating system. For example, DIX
makes no assumptions about the structure of the host 's
f i le system or about how to open communication chan-
nels-these detai ls are handled by the code in this sec-
t ion.
Device Dependent X (DDXI. DDX contains the code that
performs device dependent I/O. For example, when a
cl ient asks the X server to draw a circle or to display
text, DIX code interprets the request and passes it to the
appropriate procedure in DDX for proper device depen-
dent IiO. Conversely, when the user moves the mouse
or types on the keyboard, DDX conveys this information
to DIX for processing. DIX passes the information back
to interested cl ients.

To handle our needs, the DDX layer was split into two
more layers: a translat ion module and the X display drivers
(see Fig. 2). The translat ion module, which was writ ten by
the engineers in Corvallis, translates the data formats and
requests from DIX into a form suitable for the X display
drivers. The X display drivers, which were writ ten by the
engineers at GTD in Colorado, do the rendering to a part icu-
lar display. Between these two layers is the X driver inter-
face (XDI). The X driver interface contains about four dozen
driver entry points, the corresponding data structures, and
a str ict protocol for accessing the entry points.

This organization of DDX provided two benefi ts. First,
i t enabled us to cany on development at two separate loca-
t ions and organizations, and second, i t helped to el iminate
redundant Starbase and X display driver code develop-
ment. The functions provided by XDI include:
r Driver and device control
I Color map manipulat ions
r Accelerated graphics window support
r Cursor, raster, f i l l ing, vector, and text operations.
The translation module, which translates rendering re-
quests from DIX into a format appropriate for the low-level
X display drivers, can be very simple as in the fol lowing
DDX-Io-XDI routine which handles the DIX reouest to fill
horizontal rows of pixels.

void
FillSpans(pDrawable, pGC, nlnit, pptlnit, pwidthlnit, fSorted)

DrawablePtr pDrawable; /" pointer to drawing surface -/

GCPtr pGC;
int nlnit ;
DDXPointPtr pptlnit;

/* pointer to the graphics context "/
/- number of soans to fill -/

/- pointer to list of start points '/
-pwidthlnit; /' pointerto list of n widlhs -/

fSorted; /- ignored./

I

I
I
I
Im

hlll++{
A
I

I

M
T

v
M
Hfl

rnt
Int

DECLARE_XDI_POINTERS
GET_XDI_INFO
PREPARE_TO_RENDER

Workstation

Other
Starbase

Applications
t a a t a

/-set up data pointers -/

i- get information '/

/'set up display hardware "/

Fig.3. Starbaselxll Merge soft-
ware architecture.

DECEI\iIBER 1989 HEWLETT-PACXERO IOUNNET 9

/. FillScanline is an XDI routine that accomplishes the
fill reouest '/

('(pxdiGCJumpTable--FillScanline))(pxdiRender,
(pxdiDrawable,pGc,
nlnit ,
(int1 6 ")(pptlnit) ,
(int32 .Xpwidthlnit)) ;

FOLLOWUP RENDERING

/' number of spans to fill -/

/' pointer to list of start points t/

/* pointer to list of n widths -/

/" restore state'/

To allow processes to acquire specialized information

from the X server and to make specialized requests to the

X server, a small number of extensions were added to the

X server so that Starbase applications could:
I Register Starbase windows with the server
I Retrieve the current list of rectangles that define win-

dows visible on the screen
r Set up an error handler
r Note changes to the hardware color map.

Resource Sharing
To facilitate the exchange of information between Star-

base and X, and to allow multiple processes to share off-

screen memory and other display resources efficiently, the

graphics resource manager (GRM) was developed. The

GRM does not access the hardware directly because it is

designed to function as a notepad on which Starbase and

X can both write information regarding their use of display

resources. The GRM also keeps track of shared resources

so that both X and Starbase applications can coexist on the

same display. See the article on page 12 for more informa-

tion on the graphics resource manager.

Starbase/Xl 1 Architecture
Fig. 3 depicts the basic software architecture for the Star-

base/Xtt Merge proiect. The figure implies that X and Star-

base are both accessing the display at the same time. The

design allows for any number of Starbase applications and

any number of X cl ients to coexist on the same display.

GRM = Graphics Resource Manager

Fig. 4. A "window smart" application that uses Starbase and

X11 in the same aq?lication

10 HEWLETT-PAoKARD JoURNAL DEoEMBER 1989

The role of the GRM in this figure is to allocate resources

among cooperating X server and Starbase processes.

Fig. 4 shows the architecture of a "window-smart"

graphics application that makes programmatic use of both

Starbase and X from within a single program. This facility

allows Starbase programmers to use X rendering facilities to

enhance the usability and appearance of their applications.

Conclusion
The Starbase/X11 merge project occurred in an era of

increasing complexity in computer software. Software proi-

ects are getting larger and more geographically distributed.

This complexity is also being faced during a time when a

new tactical model has emerged in the computer industry.

Diverse groups (sometimes involving a company's com-

petitors) are forming alliances to achieve a greater goal than

any entity could achieve alone. The Massachusetts Institute

of Technology X Consortium is a successful example of

this new model at worr.

Acknowledgments
The successful completion of the Starbase/X11 Merge

proiect was because of the dedicated effort of many people.

The team at HP labs-Don Bennett, Dan Garfinkel, Steve

Hoyle, and Bob Leichner-contributed heavily to the inves-

tigation. Jim Brokish and Steve Scheid at GTD also contrib-

uted during the investigation and helped with the early

implementation of the graphics resource manager. Larry

Rupp at GTD provided the Starbase/Xt1 Merge product

with new graphics hard-copy capabilities for storing, re-

trieving, and printing images. Thanks are due Thaddeus

Konar, Penny Telleria, Art Barstow, and Alesia Duncombe

in the CIS quality and productivity department' Thanks

also to Robert Casey at GTD and Mike Hatam at XTTC

(UNIX@ Test Technology Center) who provided invaluable

assistance in system integration and testing. Special praise

goes to Harry Phinney who, as lead engineer for HP's first

release of X11, provided guidance in X server and driver

issues.

References
1. F. Hall and J. Beyers, "X: A Window System Standard for Dis-

tributed Computing Environments," Hewlett-Pockord /ournol,
Vol. 39, no. 5, October 1988, pp. 46-50.
2. R.W. Scheifler, X Window System Ptotocol, X Version 11, Re-

lease 2, Massachusetts Institute of Technology, September 1987.

UNIX is a registered trademark of AT&T in the U S.A. and other countrles

Workstaiion

Starbase lxll Merge Glossary

Because some of the terminology used here and in the rest
of the of the art icles in this series may be new or specif lc to
Starbase/X11 or they may be used before they are explained,
the fol lowing terms are del ined.

Backing Store. Locations in offscreen or virtual memory where
the contents of a window are backed up i l a window becomes
obscured because of some window system or user act ion.
Bit Map. A pixmap having a depth of one. On monochrome
displays the X server maintains al l pixmaps as bit maps.
Clip List. A l ist of rectangles representing the obscured and/or
unobscured areas of a window.

Clipstamp. An integer, associated with a window, that is used
to determine the currenl val idi ty ol a l ist of cl ipping rectangles
associated with that window.

Color Map. A set of hardware registers that maintain the red-
green-blue components of individual pixels. Pixel values, which
are commonly in the range of 0 to 255, serve as indexes into the
color map.

Combined Mode. An X server operating mode on the TurboSRX
display in which the overlay and image planes appear as a
single, integrated set to the user.
Cursor. An indicator on the screen used to direct the user's
attention. The X cursor (or input pointer) traverses the whole
display, whereas Starbase cursors (commonly referred to as
echoes) move within individual Starbase windows.
DDX. Device Dependent X. The port ion of the X server devoted
to handling device dependent l /O.
DHA. Direct Hardware Access. A method that al lows a Starbase
application to bypass the X server and render direct ly to the
Irame buffer.

Display Enable Register. A hardware register that controls
which planes of the display are viewable. Starbase and X use
the display enable register to implement double buffering
DlX. Device Independent X. Asectionof the Xserverthatcontains
a scheduler, a resource al locator, a high-level color map, and
code lor handling window functions, such as cursors, events,
extensions, fonts, graphics context, and rendering.
Drawable. A logical raster (on the screen or in memory) upon
which X and Starbase can draw. Windows and pixmaps are both
types of drawables.

Double Buflering. A graphics technique to enhance the smooth-
ness of motion. The technique works by using the display enable
register to toggle between two buffers. While one buffer ls being
rendered into, the other is displayed. When rendering to the
hidden buffer is complete, the display enable register is changed
and the hidden buffer is displayed and the previously displayed
buffer becomes the new hidden buffer.
Frame Buffer. The video memory of a display device in which
each element represents one picture element, or pixel. The frame
buffer is divided into two parts, on-screen memory (current image
on the screen) and offscreen memory (graphics memory that is
never visible).

Graphics Context, A self-consistent set of attributes such as
foreground and background colors, l ine styles, and f i l l patterns
which are used by X cl ients to specify how the X server should
render the drawing requests it receives.
Gopen (Graphics Open). The Starbase action of opening a dis-
play device or window to create a virtual device that Starbase
can render to.

GRM. Graphics Resource Manager. The GRM is a process that
handles requests from the X server and Starbase applications
for display resources such as offscreen memorv and shared
memorv.
lmage Planes. The primary display memory on HP's display
systems, used for rendering complex images.
MOMA Windows. Mult iple, obscurable, movable, and acceler,
ated windows. Hardware logic in the graphics accelerator pro-
vides very fast drawing and cl ipping of mult iple windows.
Naming Conventions. The fol lowing conventions apply to proce-
dures mentioned in these art icles.
r X<name> rs a standard X l ibrary procedure (e.9., Xcetwin-

dowlnfo).

r XHP<name> js an HP X-extension l ibrary procedure (e.9.,
XHPGetServerMode).

r xos<name> is a procedure inside the X server, located in the
translat ion layer belween DIX and the X display drivers.

r <name> without any prefix is typical ly an application-level pro-
cedure, but must be interpreted in context.

Offscreen Memory. A portion of the f rame buffer that cannot be
displayed on the monitor. In al l other respects, offscreen memory
behaves the same as on-screen (visible) memory. Starbase and
X use offscreen memory to hold character, cursor, pixmap, and
scratch information for rapid transfers lo on-screen memory.
Optimized Font. A character set that has been placed into off-
screen memory to increase i ts display output performance.

Overlay Planes. Planes of display memory that are visual ly on
top of or in front of the image planes. These planes are disabled
or set to a transparent color to view the image planes.

Pixel. The smallest addressable picture element of a display.
Typical HP displays have between one and two megapixels.
Pixel Value. A numeric value, typical ly between 0 and 255, which
determines the color of an individual pixel.

Pixmap. A hidden rectangle of raster data which is maintained
in offscreen memory when there is room, and in virtual memory
when there is no room in offscreen memory.
Raster Data. A data structure described bv a two-dimensional
array of pixel values.

Raw Mode. Running a Starbase application without any window
system.

Rendering. Any form of drawing operation, including text, l ine,
and raster output. Rendering may occur to on-screen memory,
off-screen memory, or virtual memory.

Sample Server. The X11 server template source code made
available to the general publ ic by the X Consort ium that enables
X vendors to develop servers for their own products.

Scanline. A horizontal row of pixels.

Shared Memory. A contiguous area of process data space that
is shared with another process. The X server and Starbase appli-
cations use shared memory for communication and sharing fonts,
color maps, and other display resources.

Socket. A communications channel between two HP-UX pro-
cesses. There are two types of sockets: internet sockets, which
are communication channels between machines across a net-
work, and HP-UX domain sockets, which provide faster communi-
cation within the same machine.

Stacked Screens Mode. X Server operation on overlay and
image planes in which the two sets of planes are treated as
separate display devices.

DEcEMBER 1989 HEWLETT-pAcKARD JoURNAL 1 1

_ t

Stacking Order. An ordering imposed on a set of windows that
represents the apparent visual ordering of the windows to the
user. For a window to be at the top of the stacking order means
that i t cannot be occluded by any other window.

Tile, A pixmap replicated many times to form part of a larger
oattern.

Transparent Color. A pixel value in the overlay planes that
causes the information in the image planes to be displayed in-
stead of the information in the overlay planes.

TurboSRX. A 3D graphics subsystem that includes a tr iple trans-
form engine, a scan converter, a 16-bit z-buffer, four overlay
planes, and up to 24 image planes. The TurboSRX also includes
the microcode to provide interactive 3D solids rendering, photo-
real ism, and window cl ipping capabil i t ies.

Virtual Memory. Memory that the HP-UX operating system allo-
cates to an executing process. lt is called virtual because al-
though the memory appears to be in physical memory to the
process, the system may swap it to and from a disk. The X display
drivers are capable of rendering graphics images to virtual mem-
ory as well as to on-screen memory.

Visual Type. The color map capabil i t ies of a given display. Com-
mon visual types supported on HP displays include 1-bit stat ic
gray (or monochrome), B-bit pseudo color (having 256 color map
cells of RGB values), and 24-bit direct color (using 8 bits each
for red, green, and blue values).

Window. An on-screen rectangle of raster data that can be
mapped (displayed), unmapped (removed), and rendered to.
XDl. X driver interface. A set of entry points that exist in the
device dependent section of the X server, which provide an
interface between the server's translation module and the X dis-
play drivers.

X Client. A program that interacts with the X server through one
of the X l ibraries using the X cl ient/server protocol.

X Protocol. The specification from the MIT X Consortium that
precisely defines the behavior of the X server in its treatment of
cl ients, i ts handling of events and error condit ions, and i ts render-
ing operations.

Managing and Sharing Display Objects
in the Starbase/Xl 1 Merge System
To allow Starbase and X to share graphics resources, a
special process called the graphics resource manager was
created to manage access to the shared resources. An
object-oriented approach was taken to encapsulate these
shared graphics resources.

by James R. Andreas, Robert C. Cline, and Courtney Loomis

NE OF THE CHALLENGES for the Starbase/X1l to the library. The library unpacks the response and returns
Merge project was designing an architecture that the information to the caller. The GRM supports three
supports sharing of resources among X and Star- modes of operation:

base applications. These HP-UX processes can realize sig- r The X server operating alone
nificant memory savings by sharing resources such as I A Starbase application operating alone without the sup-
character sets or fonts. X and Starbase also compete for port of any window system
private use of display resources. The architecture we de- r The X server with a Starbase application running in a
veloped, called the graphics resource manager, or GRM, window.
supports the allocation of shared resources and at the same
time provides use of display resources by individual pro- What ls Managed?
cesses, When we began investigating the GRM architecture, we

The GRM consists of an HP-UX process and a library. assumed that we would be allocating two basic tesources,
The GRM library is linked with the X server and Starbase shared memory and offscreen memory. Shared memory is
applications and calls are made to the GRM library to com- a memory resource supported by HP-UX1'2 which can be
municate with the GRM process. Fig. 1 shows the GRM attached to the address space of multiple processes. Each
architecture discussed in this article. The GRM handles a process can access the shared memory space directly. By
request it receives from the library and returns a response using shared memory in the GRM architecture, one process

12 nEwrErr-pncxARD JoUHNAL DEcEMBER 1989

^ t -

) l L

G"M
Shared
Memory

*lnternal GRM Oata Structures

Fig. 1. fhe architecture of the graphics resource manager.

can load character font information into shared memory,
and another process can later use the font.

Offscreen memory is a region of the display frame buffer
that is not visible on the display screen. The frame buffer
is the video memory of a display device dedicated to main-
taining the value of the pixels. The X server and Starbase
drivers use offscreen memory to optimize a variety of ren-
dering operations. Many of HP's graphics hardware prod-
ucts provide offscreen memory in various shapes and sizes.
Fig. 2 shows an example of the frame buffer memory avail-
able in the HP 985504 Color Graphics Board. The block
mover hardware can be used to copy areas of the offscreen
memory into visible memory. Font glyphs, which define
the pixels to be turned on for a particular character font or
set, are generally loaded into offscreen memory so that the
block mover can be used to render the glyphs to a window
at very high speeds. Pixmap patterns are also loaded into
offscreen memory so that the block mover can be used to
paint areas of the screen using the pixmap pattern (this is
how a window background is painted). A pixmap is an
array of pixel values (numerical values typically between
0 and 255) that determine the color of individual pixels.

Offscreen memory is limited to the size provided by the
display hardware. Additional memory cannot be allocated

by the system, and so the allocation of offscreen memory
must be done carefully. Other processes can obtain off-
screen memory for the storage of unique pixmaps. The
pixmaps can subsequently be used for rendering opera-
tions, such as a tile to fill a polygon, a background pattern
for a window, or an image used frequently in a program
(e.9., a pushbutton outl ineJ.

Object-Oriented Approach
When it came to deciding how to implement the al loca-

t ion of shared and private resources for cl ients, we decided
to use an object-oriented approach and encapsulate the
resources in objects.3 The first thing we did was to identify
the items we wanted to treat as objects. We identified three
types of graphics resource manager objects and their attri-
butes.
I Shared memory objects, which are used to share fonts

or information about some aspect of the display or system
state.

I Offscreen memory objects, which are used to reserve an
area of the offscreen memory resource.

r Semaphore objects, which are used to share a system
semaphore. The semaphore helps synchronize various
processes. '
The attributes of GRM objects are divided into two groups,

general attributes and specific attributes. The general attri-
butes of a GRM object are a set of fields that define the
object's name. These fields are consistent among all GRM
objects. The following shows the name fields for a GRM
object.

int class; /- class of object, client defined -/

dev_t screen; /-screendevice'/
int window; /- Xwindowid./
char name[GRM_MALNAME_LENGTH]; /.stringidentifier

of object "/
dev-t device; /'diskdevicelorfonts'i
int inode; /. inode of a font'/
int k"y; /. keyofafont"/
int partition; /.partitionofoffscreenmemory./

The name of a GRM object is a coniunction of all the
fields. Two objects may differ by as little as one value in
any one of the fields.

Object-specific information is added to the instance of
an object. For example, a shared memory object includes
the specific size of the object and its specific location in
the GRM shared memory segment, and an offscreen mem-

'Olfscreen
Memory

'Shared

Memory

Fig. 2. Frame buffer memory in the HP 98550A Color
Graohics Card. Fig.3. Architecture for building the GRM into the X server

DEcEMBER r 989 HEWLETT-pAcKABD JoURNAL 1 3

ory object is described by its specific width, height, and

depth, as well as its specific location in three dimensions

in offscreen memory.

Operations on Obiects
The GRN{ supports a set of operations that can be per-

formed on the obiects in a consistent way.
r GrmCreateObiect. The GrmCreateObject function allocates an

object of the requested class with the object instance,

allocates the requested resource, and adds the client to

the list of clients that are using the object. If the object

already exists or cannot be created, the GRM returns an

error. The client may then share the object, if it desires,

by calling the GrmOpenObject function.

r GrmOpenObject. If the described object already exists
(from calling GrmCreateObject), the client is added to the
list of clients that are sharing the object. The GRM then
passes the object's attributes back to the client. If the

obiect doesn't exist, the GRM returns an error.
r GrmCloseObject. The GrmCloseObiect function causes the

GRM to delete the client from the list of clients that are

sharing the object. When all clients have lost interest in

an object, the object is destroyed, and the object's re-

sources are freed.
Each function is an atomic operation because no other

operation is allowed to be performed while one is in pro-

gress. As the project progressed it became necessary to

group several of these operations into one large atomic

operation. Functions were added to mark the beginning

and end of these larger transactions.
The GRM also supports a function to find and list the

objects it has created. To query the existence of sets of

obiects, the client can supply an object name with the fields

set to match the value fields in other obiects. This function

is primarily used for debugging purposes.

Design and lmplementation
The project teams investigated three main architectures

to determine the best design:
r Build the GRM into the X server. One of the first architec-

tures we examined was building the GRM functionality

into the X server. In this architecture, the Starbase pro-

grams would communicate with the X server to allocate

resources. Fig. 3 shows this architecture. We did not

choose this architecture for several reasons. One reason

is that the X server is used primarily as a rendering

engine. The X server could be busy for many seconds

performing a rendering request, causing the Starbase

client to block until the X server could process a request'

Fig.4. Architecture for constructing the GRM as a library

14 HEWLETr-PAcKABD JoURNAL DEcEMBER 1989

Also, GRM functionality would become dependent on a
particular software technology in the X server, which

may change as enhancements are made to X. Another
problem occurs when a Starbase application is running

alone in raw mode. The X server would have to be exe-

cuted to support the Starbase client, even though the X

Window System operation was not desired.
I Construct the GRM as a library. The second architecture

the team examined implemented the GRM as a library,

which could be linked into the X server and Starbase

cl ients (see Fig. 41. Resource al location would be per-

formed by the library with multiprocess communication

done through a single shared memory segment. With

this scheme, allocation of obiects could be done very

quickly. The allocation operation would consist of di-

rectly manipulating data structures in the shared mem-

ory segment. This model was not chosen because of con-

cerns about its ability to support future upgrades, and

because it relies on consistent operation among all im-

plementations that manipulate the shared memory infor-

mation. We felt that we could achieve more robustness

by choosing a protocol-based communications model.

To support future version changes in this model, the

data structures would have to be designed with built-in

flexibility and version information. Proving that a newer

version of the GRM library would work properly with

older versions and vice versa would have been very dif-

ficult.
r Form the GRM as an independent process. After consid-

ering the previous two models, the project team settled

on implementating the GRM as an inciepencient process.

The independent process model is shown in Fig' 5. The

independent process model provides logical isolation

between the GRM and its client processes (the X server

and Starbase processes). The GRM process is free to define

its data structures for allocating objects without worrying

about access to these structures by the client processes.

This architecture also enabled the designers of the GRM

to be flexible in the algorithms used to allocate the objects

without worrying about backwards compatibility with

previous versions of the GRM. The protocol between the

GRM and its clients is also typed with a version number,

and the protocol data structures are padded to maximize

the potential upgradability of the GRM services.

lnteraction with X and Starbase

Communication with the GRM is originated by either

Fig.5. Architecture for constructing the GRM as an tndepen-
denl orocess.

the X server or the Starbase display driver. The GRM pro-
cess works by receiving a request, processing the request,
and then returning a reply message to the requester. An
application can perform both X l ibrary cal ls and Starbase
library calls. This results in activity by both the X server
and the Starbase driver. To get their work done, these GRM
clients can cal l functions in the GRM l ibrary to create or
open objects. The operation is synchronous because the
cl ient is blocked unti l the operation is completed by the
GRM.s The GRM l ibrary packages the cl ient request and
sends the request to the GRM process. The GRM process
processes the request, and i f i t is asked to create an oblect,
al locates the resources for the object. The cl ient is then
added to the l ist of cl ients referencing the object. Final ly,
the GRM process returns a reply, which is received by the
GRM l ibrary. The GRM l ibrary unpacks the reply and re-
turns information describing the object to the cal ler.

The GRM process never directly modifies data in the
GRM shared memory segment or in the display hardware.
The GRM process instead acts upon an "abstract view" of
these resources. The GRM maintains a data structure rep-
resenting the available resources in the GRM shared mem-
ory and the display hardware offscreen memory (see these
data structures in Fig. 1). When the GRM process al locates
an object, i t updates the associated data structure,

Allocation of Offscreen Memory
Currently, al l HP display devices supported by the Hp

9000 Series 300 and Series 800 product l ines provide an
offscreen memory resource. This memory is configured on
the device as an extension to the memory used to hold
viewable information on the display. Since display mem-
ory has a width, a height, and a depth, the offscreel memory
also has these dimensions. This complicates the sharing
of this memory because the GRM memory manager musr
allocate three-dimensional objects. Offscreen memory is
relatively easy to manage if only one process wishes to
display data on the screen at a time. However, in the Star-
base/X11 Merge architecture, multiple applications share
the display device, so managing the sharing of the offscreen
memory resource is quite a challenge. On some HP display
devices, pixmaps of varying depths can be allocated. AIso,
some display devices require that the pixmaps be aligned
on pixel boundaries for efficient access. The challenge is
to be able to allocate an arbitrarily sized and aligned three-
dimensional box out of an arbitrarily sized three-dimen-

Fig.6. Two-dimensional allocation of offscreen memory. Box
A is the available memory and box B ls the space to be
allocated from box A.

sional box of free space. In addit ion, the algori thm must
efficiently deal with the resulting free space for future al-
locations.

Three-dimensional obiects are typical ly perceived as
spheres and polyhedra of various shapes and sizes. Pix-
maps are represented as three-dimensional obiects as six-
sided blocks. A pixmap general ly has a uniform width, a
uniform height, and a uniform depth. The GRM algorithm
addresses just such pixmaps.

The Two-Dimensional Case
Three-dimensional al location is best explained as an ex-

tension of the two-dimensional case. The fol lowing discus-
sion of the two-dimensional case wil l show that the addi-
t ion of a third dimension is a fair ly simple extension of
the two-dimensional phi losophy.

We start with the two boxes shown in Fig. 6. Box A
represents the avai lable memory resource and box B is the
space to be al located out of box A. I fbox B is placed inside
box A, the rest of A can be divided into any of the config-
urations shown in Fig 7.

Configuration 1 produces a lot of fragmentation of the
free space. This fragmentation alone is enough to discount
i t as a viable option. This leaves configurations 2 and 3.
There is only one difference between these two configura-
tions and that concerns how memory is globally allocated.
With configuration 2, free space is cut into vertical strips
which results in memory being al located in vert ical str ips,
and in configuration 3, free space is cut into horizontal
strips which results in memory being allocated in horizon-
tal strips. In general, it makes little difference which con-
figuration is chosen. For software used on Hewlett-Packard
workstations, there is a reason to use horizontal strips.
Fonts are stored as horizontal strings of characters. Since
caching fonts is a major use of offscreen memory, configura-
t ion 3 was chosen as the optimal solut ion.

Adding a Third Dimension
Adding a third dimension to this problem means taking

the two-dimensional view and addine the conceot of a

Configuration 2E

I
l

I

Size of Block
to Be Allocated

Configuration 3

Fig. 7. Different memory allocation configurations posslb/e
when space tor a box is allocated from a larger box.

Configuration 1

Available Space

DICEMBER 1989 HEWLETT-pACKARD JouRNAr 15

front and a back to the obiect being al located (see Fig. Bal '

As with the two-dimensional model, there are a few ways

to handle breaking off front and back pieces to make effi-

cient use of the resulting space. Each method results in six

free blocks and one allocated block out of the original block

of memory. To coalesce the blocks when an allocated block

is freed, the GRM associates the free blocks resulting from

an al location with the al located block (see Fig' BbJ. With

this scheme, when the originally allocated block is freed,

the blocks that can coalesce with i t are easi ly found.

The allocated block forms a node of a tree, with theleaves

of the tree initially being free blocks. New requests for

offscreen memory cause one of the surrounding blocks to

be allocated, with the result being that the new allocated

block becomes a node with a new set of leaf blocks showing

the free areas-that is, the tree grows (see Fig. 9). As blocks

are freed the tree shrinks as leaves are coalesced with parent

nodes. For eff icient access, the GRM maintains a l ist of free

blocks. This l ist optimizes the search for the best-sized free

block to satisfy an al location request.

The GRM Daemon
The purpose of the GRM process, or daemon, is to manage

the allocation of graphics display hardware resources for

Back

Fig.8. (a) Two-dimensional views of an allocated block with
front and back added. (b) Data structure representation ot

an allocated block with the six free blocks from the original
block of memory.

16 HEWLETT-PACKARD JOURNAL DECEMBER 1989

all processes that want to use these resources. As such, i t

maintains a comprehensive list of the resources that have

been al located to these processes. The GRM daemon can
only perform this task correctly if it can be certain that
there is only one GRM daemon process that is allocating
resources to al l appl icat ions requesting them.

Typical daemon processes are started by an init ial izat ion

script at system boot t ime. In this situation, uniqueness of

a daemon process can be easi lv assured by avoiding mul-
t iple invocations of the script that starts the daemon pro-

cess. However, the situation for the GRM daemon is differ-
ent because the GRM daemon is not started at boot time.

Since the GRM daemon has a special ized purpose, i t is
preferable to have it executing only on an as-needed basis,

rather than running continuously as would be the case if

it was started at boot time. The GRM daemon is therefore

designed to be spawned only by a process that requires

access to the display hardware. Of course, i t is only neces-

sary to spawn a GRM daemon process if one has not already

been put into service by another graphics appl ication.
The design of the Starbase/X11 system dictates that the

X server and al l Starbase applications absolutely depend

on the proper functioning of the GRM daemon. As such,

the design of the GRM daemon required a foolproof method

to ensure that for a particular host system, exactly one GRM

daemon is given the task of mediat ing the use of al l display

hardware associated with that host, even when two or more

Fig.9. Allocation of a new block. The new allocated block

becomes a node with six leaves,which representfree blocks.

\
Front

Front View

Side view

Top

i'.Aiilt"d i
I Block l

Bottom

applications attempt to spawn a GRM daemon simultane-
ously.

The HP-UX Semaphore System
A simple solut ion to the problem of guaranteeing unique-

ness for the GRM daemon process is to use a semaphore
to ensure that only a single daemon has permission to
continue as the resource manager. Potential ly, several GRM
daemon processes could be start ing simultaneously, each
trying to test and set the GRM daemon semaphore. The
GRM semaphore mechanism ensures that only one of those
processes actual ly succeeds in the test and set operation,
with the remaining processes being obl igated to recognize
that another GRM daemon process is principal and to exit . *

Using a system semaphore to implement this scheme
would have been tr ivial had i t not been for a l imitat ion in
the behavior of the HP-UX system semaphore during the
creation of a semaphore. * * This l imitat ion is that the value
of a semaphore after i ts creation is not defined.

While the operating system does provide an atomic op-
eration for creating a system semaphore exclusively (the
operation succeeds only i f the semaphore does not already
exist), i t does not guarantee the state of the newly created
semaphore to be any part icular value. Therefore, a process
can know that i t has created a previously nonexistent sys-
tem semaphore and that i t must ini t ial ize the value of the
semaphore, but a separate process cannot know that a given
semaphore has just been created and is not yet ini t ial ized.
Since the creation of a semaphore and the init ial izat ion of
i ts value is a two-step process, i t is conceivable that another
process might attempt a semaphore operation between the
creation and init ial izat ion steps. For an application such
as the GRM daemon, this l imitat ion presented a severe
problem that required a substantial workaround.

The problem with the system semaphore can be clarified
with an example (see Fig. 10). Consider the situation where
two GRM daemon processes (process A and process B)
have been started and they are both attempting to create
and then test and set the GRM semaphore. Suppose that
process A successfully creates the GRM semaphore. Before
' ln the context of this art ic le, a semaphore can have a value of zero or one A semaphore
is ini t ia l ized to a value of zero. A lest and sel operat ion on a semaphore succeeds only
when the value of the semaphore is inl t al y zero. A successful test and set operat ion results
in the semaphore's having a value of one. The process ol test lng and sett ing the value of
t h e s e m a p h o r e i s s a i d t o b e a n a l o m i c o p e r a t i o n m e a n i n g l h a t t h e o p e r a t i o n i s i n d i v i s i b l e .

process A has had a chance to init ial ize the value of the
semaphore i t is preempted by the kernel 's scheduler. Pro-
cess B then comes along, notices that the GRM semaphore
already exists, and attempts a test and set operation on the
semaphore which currently has an undefined value. The
test and set operation may or may not succeed depending
on the random value of the semaphore. However, i f i t does
succeed, process B wil l think that i t has been designated
as the principal GRM daemon and carry on as such. Mean-
while, process A has regained the processor and proceeds
to init ial ize the value of the GRM semaphore, overwrit ing
the effect of the test and set operation of process B. Sub-
sequently, process A wil l successful ly execute a test and
set operation on the GRM semaphore result ing in two GRM
daemon processes running when there should only be one.

Various workarounds to the semaphore init ial izat ion
problem were attempted, but none of them that exclusively
used system semaphores would work because i t could not
be determined whether or not the value of a semaphore
was val id. A col league who had experienced similar prob-
lems with system semaphores suggested that a f i le lock* * *

could be used as the GRM semaphore. Besides being used
to control access to a f i le, f i le locks can be used in an
advisory capacity in much the same way as a system
semaphore. Fi le locks have the advantage that the test and
set operation does not require the two-step (not atomic)
"create and init ial ize" procedure used by system
semaphores. However, f i le locks can be dif f icult to manage
when the file being used as the subject of the lock, that is,
the lock f i le, is not writable or is transitory. As such, the
GRM daemon uses a f i le lock only as a means to control
access to the system semaphore, and the semaphore is re-
sponsible for awarding a single GRM daemon process the
guarantee of uniqueness.

The GRM Daemon Semaphore System
As mentioned earlier the purpose of the GRM daemon

semaphore system is to ensure that exactly one GRM
daemon process successfully claims responsibility for man-
aging the allocation of the display hardware. The system
must be reliable in the face of an arbitrary number of com-
"The HP-UX system semaphore conforms to the AT&T UNIX System V Definit ion.
"'A i i le lock is a fi le system semaphore associated with a segment of a particular f i le,
which is referred to here as the lock fi le

(1) For this example, the GRM semaphore has an incidental value of zero following
its creation. In general, an HP-UX semaphore has a random initial value.

(2) Since the GRM semaphore had an initial value ot zero, lhe test and set operation
succeeds.

(3) The eftect of lhe test and set operation of GRM daemon process B at time T3 is
nullified by lhe initialize operation.

(4) Each of two GRM daemon processes has successfully tested and set the GRM
semaphore. The semaphole thus falls to allow only one process to continue
as the principal GRM daemon.

Fig. 10. Timing diagram ot a
semaphore failure at initialization
of two processes.

DECEMBEFT 1989 HEWLETT-pAcKARD JoURNAL 17

Time Slice TO T1 T2 T3 T4 T5 T6

lnstantiated Create
GRM
Semaphore
(1)

l d le ldle Initialize Test and Begin
Value ot GRM Set GRM GRM Daemon
Semaphore SemaphoreOperations
(3) (4)

Daemon
Process A

lnstantiated Finds Test and Begin
GRM Daemon
Operations
(4)

Daemon
Process B

Existing Set GRM
GRM Semaphore
Semaphore (2)

peting infant GRM daemon processes (processes that have
not yet establ ished their principal status). The system must
not require user intervention even in the face of an ungrace-
ful exit by a GRM daemon process.

Given these considerations the GRM semaphore system
was designed to accommodate the fol lowing situations:
I Any process killed without opportunity for a graceful

exit. This means that the design must be able to recover
when the GRM system semaphore and/or lock file are
Ieft around after the process that created them is termi-
nated by other than programmatic means.

r An arbitrary number of infant GRM daemon processes

attempting to claim principal (unique) status simultane-
ously.

r An existing GRM daemon process holding the GRM
semaphore while in the process of exit ing.
A GRM daemon process has three phases. Its first phase

is during the initialization of an application requiring the

services of a GRM daemon. The second phase is during its
attempt to set the GRM semaphore and claim principal

status. The third phase is the operational phase, when i t
is assured uniqueness and carries out the tasks required of
the display hardware resource manager.
The Application Phase. Starbase applications and the X

server must have an executing GRM daemon to function.
During initialization, a GRM library routine within these
programs attempts to make a connection with the GRM

daemon through its designated socket address.o If it fails
to make the connection, the routine assumes that there is
no GRM daemon process executing and it spawns a GRM

daemon process. The spawned process "daemonizes" i tself
(detaches from any terminal or parent process), sets its user

identification number, and then attempts to establish itself

as the only GRM daemon process.

Claiming Principal Status. Immediately after an infant

GRM daemon process is daemonized, i t proceeds in i ts

attempt to become the only GRM daemon process. Fig. 11

shows the timing diagram for two processes (processes B

and C) trying to claim principal status and control of the

GRM semaphore.
The first step is to test and set the file lock, thereby

claiming exclusive access to the GRM semaphore. In this

way, if the semaphore does not already exist then the GRM

daemon can create the semaphore and initialize its value

without fear that another GRM daemon process may be

trying to access the semaphore at the same time. The lock

fi le, which is used as the subject for the f i le lock, must be

created if it does not already exist. If the file already exists,

either another process is trying to access the GRM

semaphore or a process was killed while attempting such

access.
The next steo is to see if the GRM semaphore exists. If

the semaphore already exists, then it is known to have a

valid value. This is true since any GRM daemon process

that created the semaphore is by convention guaranteed to

have initialized its value before releasing the file lock. If

the GRM semaphore does not exist, then it is created and

init ial ized with a val id value. Since the process is holding

the file lock, it need not worry about another process at-

tempting to test and set or initialize the value of the GRM

GRM Daemon Test and
Process B Set File

Lock

Test and Release
Fail to File
Set (1) Lock
Semaphore

Sleep Test and
Fail to
Set File
Lock (3)

Retry
(3)

Test and Tesl and Retry Exit (7)
Set File Fail to until
Lock Set (5) Timeout

Semaphore (6)

(1) GRM daemon process A holds the GRM semaphore.
(2) GRM daemon process B holds the GRM tile lock.
(3) GRM daemon process C holds the GRM tile lock.
(4) The test and set semaphore operation includes the creation ol the semaphore if it

doesn't already exist. The creation, testing, and setting of a semaphore can
be considered to be an atomic operation since all ot these operations aie
executed while holding the tile lock and only one process can be holding the tile
lock at a given time.

(5) GRM daemon process C holds the GRM semaphore.
(5) A retry cycle includes setting the file lock, tesling the semaphore, releasing the

file lock, and a short sleep.
(7) Concede and exit (i.e., time out) after enough time has elapsed during the relry

cycle to allow an existing GRM daemon process to service a disconnecl requesl
from its last client, free various resources, remove its lislening socket, and
remove the GRM semaphore.

Fig. 11. Timing diagram for the GRM semaphore system

18 HEWLEfi,pACKARD JoURNAL DEcEi,4BER 1989

GRM Daemon Lose Last Remove Remove Exil
Process A GRM Client Listening Semaphore

Socket

Test and
Fail to
Set File
Lock (2)

Test and Test and Release Open Accept Continue
Set File Set File Lock Listening GRM with GRM
Lock Semaphore Socket Clients Daemon

(4) Operations

semapnore.
Once the existence of the GRM semaphore is established

and i t is known to have a val id value, an attempt can be
made to test and set the semaphore. I f successful, the
semaphore is then held by the process that set i t . Once the
semaphore is set, the lock f i le can be removed, al lowing
other processes to create a new lock f i le in order to access
the semaphore. The l i fe of the lock f i le is general ly l imiter,t
to the duration of the creation and init ial izat ion of the GRM
semaphore.

If the test and set or any of the preceding operations is
not successful, then the f i le lock must be released to provide
other infant GRM daemon processes the opportunity to
access the GRM semaphore. After the f i le lock has been
released, the infant GRM daemon process wil l sleep for a
short period of t ime and then retry the entire procedure.
The sleep duration is short enough to expedite the GRM
daemon startup procedure. However, the retry loop results
in a delay that is long enough to ensure that there is enough
time for an exit ing GRM daemon to f inish i ts exit and clear
the GRM semaphore.
Operations Phase. Once establ ished as the principal GRM
daemon process, the GRM daemon goes about ini t ial izing
its data structures and opening i ts l istening socket to begin
serving i ts purpose. One or more GRM cl ients wil l then
make connections to the GRM daemon and request display
hardware resources as needed. When a GRM cl ient exits,
i ts connection with the GRM daemon is closed and the
resources al located to i t are freed and made avai lable to
other GRM cl ients.

When the GRM daemon detects the absence of its clients,
it removes the listening socket, removes the semaphore,
and then exits. Any GRM client that may be starting up at
this t ime wil l fai l to establ ish a connection, which includes
verifying the connection with a full handshake, and it will
start the process over again by spawning a new GRM
daemon.

Conclusion
The GRM provides a means for al locating a system's

display resources among various competing cl ients. The
GRM also provides a means of sharing information among
the cl ients through the encapsulat ion of the information
in objects. One cl ient can access an exist ing object i f i t
knows the name of the obiect, even i f the object was created
by another cl ient. The cl ient can access the data by asking
the GRM to open the object. The GRM also provides a
sophist icated nemory al location mechanism for the scarce
offscreen memory resource. The mechanism includes a
means to coalesce freed fragments of offscreen memory for
reuse. Final ly, the design ofthe GRM interface ensures that
only one GRM daemon process runs on a given system,
even though several cl ients init iate access to the GRM
simul taneous ly .

Acknowledgments
We'd l ike to acknowledge Dan Garf inkel and Steve Low-

der of HP Laboratories for their conceptual izat ion of the
graphics resource manager faci l i ty and their aid in design-
ing the architecture.

References
1. F.W. Clegg, et. al, "The HP-UX Operating System on HP Preci-
sion Architecture Computers," Hewlett-Packord /ournol, Vol. 37
No. 12, December 1.986, pp. 4-22.
2. M. Rochkind, Advonced UNIX Progromming, Prentice-Hall ,
1985.
3. G. Booch, "Obiect Oriented Development," IEEE Tronsoctions
on Softwore Engineering, Vol. SE-12, No. 2, February 1986, pp.
2 7 7 - 2 2 1 .
4. D. Comer, Operoting System Design, The XINU Approoch,
Prentice-Hall , 1984, pp. 13-16.
5. R. Summers, "A Resource Sharing System for Personal Comput-
ers in a LAN: Concepts, Design, and Experience," IEEE Tronsac-
t ions on Softwore Engineering, Vol. SE-13, No. 8, August 1987,
pp. 8Ss-904.
6. S. Leff ler, et. al, Design ond Implementotion of the 4.3 BSD
UNIX Operotr'ng System, 1989, pp. 296-258.

DECEMBER 1989 HEWLETT PACKARD JOURNAL 19

Sharing Access to Display Resources in
the Starbase/Xl 1 Merge System
The StarbaselXl l Merge sysfem providesfeaturesto allow
Starbase applications directaccess to the display hardware
atthe same time X server clients are running. There are also
capabiilties to allow sharing of cursors and the hardware
color map.

by Jeff R. Boyton, Sankar L. Chakrabarti, Steven P. Hiebert, John J. Lang, Jens R. Owen, Keith A.
Marchington, Peter R. Robinson, Michael H. Stroyan, and John A. Waitz

P'S GRAPHICS DISPLAY HARDWARE provides
many display resources that must be carefully man-
aged to maintain order on the display when compet-

ing HP-UX processes, such as the X server and Starbase
applications, are attempting to access the display hardware
at the same time. The hardware resources that must be

shared among these processes include the frame buffer
(video RAM), cursors, fonts, and the color map. This article
discusses methods used to al low Starbase applications and

the X server to share access to this common pool of hard-
ware resources, and a method cal led direct hardware access
(DHA), which enables Starbase applications to achieve high
performance when accessing the display, while maintain-

ing the integrity of the X Window System.

Display Hardware
Fig. 1 is a block diagram of a typical graphics display.

This is a general ized model and does not represent the

implementation of any particular graphics product. Some

elements are optional-for example, only 3D systems need

a z-buffer and some low-end graphics systems have no
graphics accelerator.
Graphics Accelerator, The graphics accelerator provides

specialized hardware to perform graphics operations on

commands and data from the display driver running on

the host system. The fundamental job of the accelerator is

Commands and Dala

X, Y, and Pixel Data

X. Y. and Pixel Oata

Pixel Data

Pixel Data Stream

Video

Digital Color Levels
Fig. 1. Blockdiagramof atypical
HP hardware display system.

20 HEWLETT,pAcKARD JoURNAL DEcEMBER 1989

Graphics Accelerato.

to apply viewing and modeling transforms and light source
models to the data to convert it into a format usable by the
scan converter. The scan converter consists of hardware
for the generation of pixel data that represents polyl ine
and polygon primit ives. Operations on more than one win-
dow are supported by the window control logic, and hidden
surface removal is provided by the z-buffer. The accelerator
also has responsibi l i ty for the control of most other hard-
ware resources in the graphics processor, such as the con-
f iguration of the frame buffer and color map.
Frame Buffer. The frame buffer is a specialized (usually
dual-ported) RAM. Each addressable location in the frame
buffer represents one picture element, or pixel. Some por-
t ion of the frame buffer is displayable, so i ts contents rep-
resent the current image on the screen. Pixel values are
read sequential ly from the frame buffer and converted to
a video signal by the color map and i ts associated circuitry.
The entire frame buffer can be scanned as many as 60 t imes
per second to keep a steady image on the monitor. The
port ion of the frame buffer that is not displayed is cal led
offscreen memory. Special circuitry cal led a block mover,
which is located in the frame buffer control ler, is used to
copy a rectangular region from one place in the frame buffer
to another. Both the on-screen and offscreen port ions of

Process 1
Virtual Address

Space
Physical Address

Space

Maximum Maximum

Minimum

Virtual Memory Pages
Mapped to Main RAM
Space Available lol
User Processes.

the frame buffer are accessible to the graphics accelerator.
The frame buffer is physically separate from system RAM*

but i t is mapped into the virtual address space of al l pro-
cesses that access i t . Therefore, i t is possible for several
processes to have the same physical RAM of the frame
buffer mapped into their virtual address space (see Fig. 2).
This requires that processes must cooperate when making
modif icat ions to the frame buffer. The methods we use to
share the frame buffer are discussed later.
Color Map. The color map is a very high-speed lookup
table that maps the numbers stored in the frame buffer to
the actual color values. The user specif ies the mapping
with commands l ike: the number 5 in the frame buffer
represents the color a,b,c where a,b,c are the intensit ies of
red, green, and blue that must be mixed to create the desired
color. After looking these intensit ies up, the color map
converts them to analog voltages and sends them to the
monitor.

'System RAf./ and lrame buffer FA|\y' are both components of the physical address space
The physicai system RAN.4 is the 4l\i1 to 481v1 bytes ol DFAN.4 memory purchased with the
machine. The physical lrame buffer memory is vtdeo memory mounted on the display
controller card

Process 2
Virtual Address

Space

Maximum

Minimum

Fig. 2. Two HP-UX processes
mapping the display lrame buffer
and control space into the same
phy sical address space.

DEcEr\iBER 1 989 HEWLETT-pAcxnRo,touRtar 21

Minimum

Direct Hardware Access

In the X Window System, user processes, or clients, do

not render directly to the frame buffer. To gain access to

the frame buffer, clients make drawing requests to the X

server, which is the only process with access to the frame

buffer. The server has control and knowledge of the state
of the frame buffer. However, to achieve maximum perfor-

mance and functionality, some clients, such as Starbase

applications, require direct access to the frame buffer. To
gain direct access to the display in an organized way, a

client must cooperate with the server. The client must ob-

tain information from the server about the areas of the
frame buffer that represent the visible area of the client's
window and al l rendering by the cl ient must be cl ipped

to this area. This is done by requesting the server to register

an existing window for direct hardware access (DHA). In

response to this request the server sets up mechanisms to
pass the clipping information to the client and to update

it as necessary.
Two methods are used to pass information from the

server to the DHA client: shared memory and HP X exten-

sion library calls. Graphics resource manager shared mem-

ory is used for information that does not change in size,

such as the cursor state and fonts. Variable-size data such

as the clip list is passed to the client via HP X extension
library calls (routines with an XHP prefix). Using shared

memory for variable information would create shared mem-

ory fragmentation problems, and the overhead of convers-
ing with the graphics resource manager (GRM), which man-

ages the shared memory area used by X server and Starbase
processes, could cause performance problems. The com-
munication links between a DHA client and the X server

are shown in Fig. 3.

Data Structures
Fig. 4 shows the data structures in GRM shared memory

and process private memory that allow direct hardware
access by Starbase DHA applications. Pictured are the data

structures that would exist for one window on one screen.
Multiple windows, color maps, and screens are supported
and many of the structures shown are replicated in such

circumstances. The X server and the Starbase processes

have pointers for accessing the data structures in shared
memory. The data items shown in Fig. 4 will be referenced

and explained in later sections of this article.

Opening a Window
To allow a Starbase DHA process to be ported to run in

X with little or no source code changes, it is important that
the normal gopenQ procedure work the same way it does
when the application is drawing directly to a graphics dis-
play.

The following activities occur during a Starbase open
(gopenQ) of an X window:
I If it is not already running, the graphics resource manager

is started so that the Starbase process can access shared

memory objects resulting from a DHA window registry.
r Tests are made to determine if the pathname parameter,

which names the window, refers to an X window or one

of the other supported objects of gopenQ.

22 HEWLEfi-pACKARD JoURNAL DEcEMBER 1 989

r If the object being opened is an X window, the host
name, the display identifier, and the screen number are
obtained. If a driver-level socket connection to the server

for that screen does not exist, one is opened.
I If the window is to be an accelerated window, an ac-

celerator state identifier is generated.
I The XHPRegisterWindow0 procedure is called. If it suc-

ceeds, then a data structure (DHA window object) will
be created in shared memory that contains the registered

window information.
r The frame buffer is opened and mapped into virtual

space using the device pathname returned by the win-
dow registry call.

r The registered window object and other DHA shared
memory objects, such as the DHA screen object, the dis-
play state, and the X server's cursor state, are opened.
These data structures are shown in Fig. 4.

.

H;jlt,"l
clip list for the window is obtained from the

Registering for DHA Access
An HP X library extension, XHPRegisterWindow0, was

added to the server to allow a client to request DHA access

to a window. The client passes the identification numbers

of the desired window and the screen containing the win-

dow. Additionally, the client may request that the window

be registered for use by a graphics accelerator. Upon receipt

of the registration request, the server requests the graphics

resource manager to create a structure in shared memory

and fill it with information pertinent to the window. In

Fig. 4 this structure is called the DHA window obiect. The

information in the DHA object for each registered window

includes:
I Clipstamp. An integer counter that is incremented

whenever the clip list for the window changes. This is

used as a trigger to the client that it needs to obtain a

new clip list via the XHPGetClipList$ Iibrary procedure.
I nUsers. An integer value representing the number of reg-

istrations active against the window.
I nAccelerated. An integer value representing the number

of accelerated registrations active against the window.
r window-id. An integer value representing the server's iden-

tification number for the registered window.

After the DHA window object is created, the server passes

its GRM shared memory identification back to the client.

Fig.3. Communication paths betvveen a DHA client and the

X server. GRM : graphics resource manager.

The client obtains access to the DHA window object in
GRM shared memory and reads the information supplied
by the server. As the state of the window changes, the
information in the DHA window object is updated by the
server.

A window may be registered for DHA access multiple
times by the same client or by multiple clients. All registra-
tions use the same shared memory object (DHA window
object). A count is kept of the the number of current regis-
trations on a window. A client terminates a registration
with the library procedure XHPUnRegisterWindowfl. When the
number of registrations drops to zero, the server requests
the GRM to delete the shared memory object and the win-
dow is no longer directly accessible by clients

The Clip List
The visibility and position of the registered window can

change at any time. The user can partially obscure the
registered window with another window, move it to another

area, iconify it, and so on. The clip list is a list of rectangles
describing the areas of the window that are visible or
obscured. In Fig. 5a window A is partially obscuring win-
dow B. Window A is completely visible and its clip list
consists of only one rectangle. The clip list for window B
consists of three rectangles, two visible and one obscured.

The clip list is a dynamic list that can be as small as one
rectangle (the window is fully visible) or as large as several
hundred rectangles. Rather than pass this information
through shared memory, it is the responsibility of the DHA
client to request the list via a library proceclure. The
clipstamp, which is created when a DHA client registers a
window, provides a fast mechanism to notify all interested
DHA clients when the clip list changes and they need to
obtain a new cl ip l ist.

Whenever the clip list for a window changes because of
events such as a window move or stacking order change,
the server increments the ctipstamp field of the DHA window
object. When the DHA client wishes to render, it compares

Device Dependent
Structures

Color Map

Drawable

*DlX = Device Independent X
DOX = Device Dependent X

DHA Screen Object Cursor State

Display State

DHA Window Obiect

Fig.4. The data structures that
contain the information that ena-
bles display resource sharing be-
lween Starbase applications and
the X server.

DEoEMBER 1 989 HEWLETT-pAcxeRo .louRNer 23

----xjry---- ,-
shared Memory starbase Process (DHA ctient)- t

Device Independent
Structures

gopen State Structures

the cl ipstamp in the DHA window obiect against i ts local

copy. I f they dif fer, the cl ient knows the cl ip l ist has

changed since its last rendering operation and it must re-
quest a new clip list. After making the request, the client

copies the shared memory value of the clipstamp into its

local copy for the next t ime. This mechanism avoids syn-
chronization problems because no client ever clears the

clipstamp field. Multiple clients sharing the same winciow
merely bring themselves into synchronization with the cur-
rent clipstamp value.

To obtain a new cl ip l ist, the cl ient uses the l ibrary pro-

cedure XHPGetClipListQ. The cl ient passes to the server the
identification numbers of the registered window and the

screen containing the window. The procedure returns to

the cl ient the fol lowing information:

I x,y. Integer values representing the origin (upper left

corner) of the window. This value is relat ive to the origin
of the screen.

r Width. An integer value representing the width in pixels

of the window.
r Height. An integer value representing the height in pixels

of the window.

r Count. An integer value representing the number of rec-

tangles in the cl ip l ist.
r Cl ip List Pointer. A pointer to a l ist of rectangles con-

s t i t u t i n g t h e c l i p l i s t
The DHA client knows the size of the frame buffer and

where the frame buffer's physical memory is mapped in

its virtual memory space. By using this information in con-

1 00,1 00

249,1 50

1 00,1 99

249,249

Fig. 5. (a) Two overlapping windows showing their positions
in screen coordinates. (b) The c/rp /isfs for the overlapping
windows in window-relative coordinates where X1 ,Y1 : upper
left and X2,Y2 : lower right. X2 and Y2 are one pixel outside
of the true boundary to make the mathematics easier.

24 NCWTETT PACKARD JOURNAL DECEI\,1BER 1989

iunction with the origin and size of the window, the cl ient

can index into the frame buffer and calculate the memory

addresses i t is al lowed to access.
The union of the rectangles in the cl ip l ist covers the

renderable area of the window. Each rectangle is specified
by the x,y coordinates of its upper left and lower right

corners. The values of these coordinates are relative to the

origin of the window (see Fig. 5b). Each rectangle is marked

as either visible or obscured. Visible rectangles are visible

on the screen. Obscured rectangles are not visible because
they are either obscured by another window or are partially

off the screen. The cl ient traverses this l ist, rendering into

the visible rectangles. If the window has no backing store,

which is a location in memory for backing up windows
that become obscured, rendering to the obscured areas is

discarded. If the window has backing store available and

the client can render to it, then rendering to obscured rect-
angles is diverted to the backing store. Backing store is

discussed in detai l later in this art icle.
The client can request a clip list in one of three formats,:.

YXBANDED. VISIBLE, or OBSCURED. In the YXBANDED format,

both visible and obscured rectangles are present in the list
(see Fig. 6). They are spl i t and ordered so that al l rectangles

with the same y-origin will have the same height, thus

creating bands across the window. Rectangles in the same

band are sorted by increasing x-origin value. This type of
ordering can enhance performance when rendering is done

by filling horizontal scan lines. In the VISIBLE and

OBSCURED formats, only rectangles of the respective type

are present in the list. They are coalesced into the fewest
possible number of rectangles and are not ordered. These

formats are useful for displays that have hardware clipping
capabil i t ies.

A DHA client can use the X facility XSet0lipRectanglesQ to

restrict rendering to a subset of the window. If the graphics

context containing the cl ient cl ipping is specif ied to the

YXBANDED Clip List Rectangles tor Window A:
01, v1, v2, v3, 02, v4, 03, v5, v6, 04, v7, v8

Where:
O = Obscured
V = Vis ib le

Fig. 6, An illustration of a clip list for a YXBANDED window.
YXBANDED window A is partially obscured by windows B, C,
and D.

(a)

(b)

Window B

Window A

Clip List for Window A

Rectangle Obscured?l X1 | Y1 | X2 | Y2

A1 F a l s e | 0 | 0 1 1 0 0 1 1 0 0

Window B

window AClip List for Window B

Rectangle Obscured? x2

XHPGetClipList$ function, the resultant clip list will be re-
stricted to that subarea

MOMA Windows
Mult iple, obscurable, movable accelerated windows, or

MOMA windows, refers to the hardware logic in the graphics
accelerator that provides very fast drawing and clipping
of mult iple windows. The HP 98556,4, 2D Integer-Based
Graphics Accelerator and the HP 98732A 3D Graphics Ac-
celerator contain graphics accelerator engines that use
hardware faci l i t ies for cl ipping. When a DHA cl ient wishes
to use an accelerator to render into a window, i t registers
the window as accelerated. For some devices, such as the
HP 985564, this also implies that the server wil l al locate
a MOMA hardware cl ipping state on behalf of the cl ient.
For other devices, the DHA cl ient al locates the cl ipping
state.

When the cl ip l ist for an accelerated window changes,
the server downloads the new clip list directly into the
MOMA hardware on behalf of the client. However, there
may be reasons why the DHA cl ient must also be able to
load the cl ip l ist direct ly into the accelerator. For example,
on the HP 98732A 3D Graphics Accelerator, the cl ipping
rectangles for only a single window are stored on the de-
vice. As graphics contexts are swapped into the accelerator,
appropriate cl ip rectangles must be loaded into the MOMA
hardware. When the server is able to maintain the clip list
state in the accelerator, the accelerated DHA processes are
able to achieve a steady throughput because they do not
have to spend time downloading clip lists.

The server itself does not take advantage of graphics
acceleration. There are two reasons for this. Currently no
graphics accelerators render according to all the X specifi-
cations. More important, HP's accelerators are basically
first-in, first-out queues-the rendering commands are pro-
cessed in the order they arrive. Some operations that can
be performed by HP's advanced graphics devices, such as
the HP gB732A, can take a significant amount of time for
X to perform. However, a critical factor in the usability of
a window system Iike X is the response time for operations
such as window moves and creations. If the X server oper-
ations must wait in line behind a long stream of compli-
cated graphics primitives, the response time will not be
acceptable.

Starbase/Xl1 Merge Locking Strategy

Graphics driver software is closely coupled to the
graphics hardware it supports. The driver routines set
hardware registers to certain values and then drawing op-
erations or other actions are started. In a multitasking en-
vironment such as HP-UX, there may be more than one
process that includes a graphics driver that needs to access
the display hardware, and one process may be preempted
or swapped out at any time, even during the execution of

jriver procedures. To prevent indeterminate results arising
from multiple processes using the graphics hardware in an
uncontrolled way, there must be some means of restricting
access to one process at a time. The permission (or token)
to use the display must be passed from one process to
another.

1. In stacked screens mode, the othe. screen on lhe
same device is referred to as this screen's
"related screen."

2. Since stacked screens implies sharing one piece
ot hardware, only one lock exists in the HP-UX kernel
so only one screen or the othor can lock the device.

3. It one screen of a slacked scteens mode server
takes the lock lrom another, the screen losing
lhe lock can make no more assumptions about the
hardware. Therefore, the old screen's rendering
state is invalid.

Flg,7. Flowchart for the routlne xosPrepareToRender which is
used to handle locking within the X server.

DEcEMBEF 1 989 HEWLETT-pAcrnno rouRNnr 25

One way this might be done is by implementing a token
that the kernel controls. Only the process that has the token
would be allowed to access the graphics hardware, and all
other processes would actually be prevented from access-
ing the registers. This is not how the problem is solved in
HP-UX. Instead, all processes are free to access the
hardware, requiring that a convention be established and
followed to ensure that only one process gains access to
the graphics display at one time. The HP-UX kernel helps
in this matter by providing a token in the form of a software
semaphore, and by blocking processes that request the
semaphore while another holds it. Processes that do not
follow the protocol of waiting to gain access to the token
are not prevented from changing the hardware registers.
The special kernel semaphore in the Starbase/X1l Merge
system is often called the display lock or kernel lock, and
it locks access to the physical display.

X Server and DHA Processes
Since the display lock is a system resource that processes

contend for, it is a prime candidate for creating the classic
deadlock problem. A typical deadlock problem was en-
countered and solved for a situation involving a Starbase
DHA process and the X server. A Starbase process might
gain access to the display lock not only to operate on the
display hardware, but also to operate on shared memory
structures associated with the display. In the course of its
operations, it may need to call one of the standard HP
extension X procedures to communicate with the server.
When the server wakes up to service this request, as well
as any other input it has received, it attempts to get the
display lock. A deadlock occurs because the Starbase pro-
cess is waiting for the server to respond, but the server is
waiting for the display lock.

To solve this and similar problems in the Starbase driv-
ers, the calls to X procedures are strategically placed out-
side of code regions where the lock is held. An interesting
example of this is the code to fetch a new window clip
list. As long as a Starbase process running in a window
does not hold the lock, the X server can process a request
to change the clip list for the window. However, if the
Starbase process gets the lock, then it cannot ask the server
for the current clip list because of the deadlock that would
result. The code to solve this problem incorporates the
following algorithm:

while the clip list is out-of-date
request a new clip list from the server
get the display lock
if the clip list that was fetched is still up-to-date

then exit the loop-go on to render
else release the lock-go back around the

loop aga in
endwhile

Locking within the X Server
The X server typically processes requests from several

clients for one or more windows each time it detects that
there is input to be processed (a wakeup). At some point
during this processing, before the graphics hardware is
accessed, the server process must obtain the displav lock.

26 Hewrerr-pncrARD JoURNAL DEoEN/BER 1989

All access to the hardware in the StarbaseD(11 server is
governed by the routine xosPrepareToRende(and its greatly
simplified cousin xosLockDevice0. The duties of xosPrepareTo-
RendeO are to verify ownership of or claim the display lock,
remove cursors (Starbase or X) from the area to which the
server is about to render. and ensure that the X server's
and X display driver's concept of the cunent rendering
state are the same. Fig. 7 summarizes the actions of xos-
PrepareToBender. xosLockDevicefl, as its name implies, only
performs the locking portion of xosPrepareToRendeO. It is
used when it is desired to lock the hardware but not change
the display.

In some places it is difficult for the X server software to
determine whether the lock is already held. To handle the
possibility of nested attempts to gain the display lock, each
X display driver maintains a lock count. When the lock
count (nesting level) reaches zero, the X display driver
issues an unlock call to the graphics driver in the HP-UX
kernel that maintains the semaphore for the locked device.
Immediately before unlocking the device, the X display
driver resets the hardware and any software registers it
might be maintaining to a state consistent with the expec-
tations of other processes that might access the display.
Under normal circumstances, this reset is valuable. How-
ever, in stacked screens mode the reset is disastrous.

In stacked screens mode one physical display device is
made into two screens and is opened as two separate de-
vices. This causes the display driver to maintain a separate
lock count for each open. If either count goes to zero, the
physical device will be reset and unlocked. A busy server
is likely to render to both screens in a single wakeup, so
locking one half of a stacked screens mode server must
imply locking the other half. Although the display lock is
shared, rendering to one half of a stacked screens device
invalidates whatever is known about the hardware state in
the other half. Stacked screens mode is described in the
art icle on page 33.

Since claiming the lock on a device excludes other pro-
cesses from access to that device, sharing the hardware
requires that the lock be claimed at the last minute. The
deferred lock claim avoids holding off direct hardware ac-
cess clients any more than necessary. This requirement is
especially critical when running with multiple physical
screens. There is obviously no need to hold off direct
hardware access to one screen while the X server is writing
to another.

Each X display driver provides an entry point called
ValidateRenderingstatefl. This routine ensures that the hard-
ware, display driver, and server are consistent and set up
for rendering. Calls to ValidateRenderingstateQ can be very
expensive, so care is taken to use it as little as possible.
The usual reason for calling VatidateRenderingstatefl is that
the hardrvare state is unknown or known to be invalid. For
example, when the display driver releases the lock, the
hardware is returned to its base state, so revalidation of
the rendering state is necessary upon claiming the lock.

To minimize the number of times ValidaleRenderingState$
is called, the server keeps a pointer to the the last rendering
state structure used for each screen. This pointer is set to
null whenever the lock is surrendered, the cursor changes
shape, color, or posit ion, or the attr ibutes of the window

change. Any of these changes means that the contents of

the rendering structure itself have changed. When xos-

PrepareToRende{ is invoked, if the new rendering structure

is the same as the current one, the call to ValidateRen-

deringstateQ may be skipped.

Shar ins (l u rso rs

In the effort to ensure that Starbase applications running

in the X Window System have ful l functional i ty so that
user programs can be used in the uew environment without
source code changes, one part icular area of Starbase func-
t ional i ty that proved especial ly dif f icult was the implemen-
tat ion of cursors in windows. Starbase implements many
different kinds of cursors, including crosshairs, rubberband
boxes, and raster cursors. For a Starbase process to draw,
it must remove the cursors that interfere with the window
to be accessed, perform the rendering operations, and re-
place the cursors. The same is true of the X server when
it needs to render somewhere on the screen. The shared
drivers effort described on page 7 al lows much of the code
that draws and undraws the cursor to be shared, but there
is st i l l a lot of logic that had to be careful ly designed to

ensure that the server and Starbase behave correctly in all

si tuations. In Fig. 4 the data structure labeled "Cursor

State" contains a data block for each cursor.
Cursor removal is complicated by the existence of both

Starbase and X cursors. These two types of cursors have
significant differences. Starbase cursors can have multiple
instantiations----one window can contain more than one
Starbase cursor. In the X environment only one X cursor
can exist on the screen. Starbase cursors also differ from
X cursors in that Starbase cursors are clipped to the win-
dows containing them. Starbase cursors cannot extend into
the borders of their containing windows. The X cursor is
a global entity in that it is never clipped and can extend
through mult iple windows and their borders. To ensure
that cursor operations are consistent and predictable, all
the cursors in a window have a stacking order, and no
cursor can be moved or operated on unless all the cursors
on top of it have been removed. The X cursor is always on
top.

Because Starbase is allowed to gopen (open) a single win-
dow many times it is possible for an X window to have
multiple Starbase cursors in it. A mechanism was added
to the Starbase display drivers to maintain a list of active
cursors for a particular window. This list, which is labeled
"Echo List" in Fig. 4, is located' in GRM shared memory.
The list is traversed before the Starbase drivers do any
rendering, and in the procedures associated with the XDI
entry calls RemoveCursorQ and ReplaceCursoO, each active
cursor in the Iist is removed in the order it is found. When
a Starbase cursor is activated, the Starbase driver adds it
to the list, and when the Starbase cursor is deactivated or
the program dies, the cursor is removed from the list.

The X display drivers also use functions associated with
the XDI entry points RemoveCursorsQ and ReplaceCursorsQ to
help the X server remove and replace the X and Starbase
cursors before and after rendering operations. Unlike the
routines used by the Starbase drivers, these routines accept
flags to perform selective removal of Starbase cursors, the

X cursor, or both. This is accomplished without the X
server's having to know very much about the cursors' rela-
tive stacking order or other details. Once the X cursor is
removed, i t remains removed unti l the device is unlocked.
The principal reason for not replacing the X cursor unti l
the last minute is to avoid invalidating the current render-
ing state.

Removing cursors in the X server can be an expensive
process, so care is taken to avoid unnecessary cal ls to the
RemoveCursorsQ routine. The server keeps a flag for each
window to indicate whether cursors have been removed.
Since the cursor removal code in the display drivers only
removes cursors from visible areas of a window, cursors
must be removed before changing the cl ip l ist in those
cases where the window situation is being modif ied (e.g.,

a window is being moved or iconif ied). The cursors are
replaced using the new cl ip l ist, thereby drawing them into
any newly exposed areas.

Cursor removal is further complicated by Starbase cur-
sors in reserved planes. On the SRX and TurboSRX display
systems the fourth overlay plane can be used to hold Star-
base cursors. The fourth plane is used for cursors by writ ing
the cursor color into the top eight entr ies of the color map.
Whenever the fourth plane has a one in it, the cursor color
wil l be displayed on the screen, al lowing the cursor to be
drawn in the overlays without destroying the color already
there. Clearing the fourth plane restores the old color. Since
these cursors need not be removed for normal rendering,
the RemoveOursorsQ routine typically does not remove them.
In some situations, such as changing the stacking order.of
windows, moving windows, and so on, these cursors must
be removed because their associated windows may become
ful ly or part ial ly obscured. These situations are handled
by catching them and passing the flag ALLPLANES to the
X display driver when calling RemoveCursorsQ. Of course
use of the ALLPLANES flag must be remembered so it can
be passed to ReplaceCursorsfl when placing the cursors back
on the screen.

Shar ing l " t tn ts

The fast alpha/font manager IFA/FM) system is a utility
package that Starbase applications use to display raster
text. This proprietary system was originally developed for
the HP Windows/9O00 and Starbase graphics environment.
Being an early proprietary system, FA/FM could not take
advantage of any of the work done by public domain sys-
tems such as X. New development for FA/FM, such as the
creation of new fonts, had to be done by HP.

During the Starbase/Xl1 Merge design phase, the design
team saw the opportunity to remove FA/FM's reliance on
proprietary fonts and share the font files associated with

the X Window System. The team set about designing a new
font loading system that could be shared by both the X

server and the FA/FM libraries. In addition, the FA/FM
system was reengineered to render with X fonts. There
were good reasons to design the new system. By removing
FA/FM's reliance on proprietary fonts and allowing FA/FM
to use the same font files as X, we anticipated that FA/FM
would have a richer set of fonts to draw from. Whenever
a new font was distributed for X, it could be used by FA/FM
as well. X fonts are distributed in a format called Binarv

DEcEMBER 1 989 HEWLFTT-pAcKARD JoURNAL 27

Distr ibution Format, or BDF. This has become a de facto
standard in the workstation marketplace. Font vendors typ-
ically make their fonts available in BDF format. BDF fonts
are usually translated by workstation vendors into Server
Natural Format (SNFJ for efficiency in storage and loading.

We also saw the opportunity to conserve system re-
sources. While the X server is running, offscreen memory
and system RAM are heavily used. Therefore, it was de-
cided that with proper design and engineering, we could
create a system that allowed both FA/FM and X not only
to share font files, but also to share the actual fents in
virtual memory and offscreen memory.

The core of the font sharing system is the font loader.
Early in the design phase it was decided that the easiest
way to share fonts was to write a single font loading system
that could be used by the X server and the FA/FM library.
This shared loader's responsibi l i ty is to read the font f i le
from disk into shared memory, making the font available
to requesting processes.

At the most basic level, the font loader is quite simple.
When a request is made to load a font, the font loader does
the fol lowing:

Locate and verify that the font file is a valid X font
If font is in shared memory

establ ish pointers
return

Else allocate the necessary virtual memory
Create a shared memory object in the GRM's

shared memory space
Load the font's disk imaee into the shared

memory
Establish pointers
Return

The GRM shared memory object created by the font
loader is the data structure labeled "Font Object" in Fig.
4. As long as a particular font remains loaded, any further
requests to load this font will result in the loader's finding
the font in shared memory because the same code is used
by Starbase applications and the X server to load fonts.
This ensures that at no time will there be more than one
copy of a font in memory.

There were some additional requirements that had to be
met for this new technology to be acceptable.
r Object Code Compatibility. Even though the font files

used by FA/FM were changing, we had to ensure that
programs that used the old technology would still work.

r Relinked applications had to work. We had to ensure
that relinking an application to use the new FA/FM font
technology did not cause it to break, even though the
application might contain absolute pathnames of fonts.
The first requirement meant that whatever was done for

the reengineered FA/FM system, the fonts that were cur-
rently used by the old FA/FM system must remain where
they were in the file system so that old object code refer-
ences would st i l l function.

The second requirement could have been met easily if
not for the first requirement. For example, if an object mod-
ule that contained a request to load the font lusr/libiraster/6 x 8/
lp.8u was relinked, it had to be able to find a font that was
in the X font format from this pathname, even though the

28 HEWLETT-pAcKARD JoURNAL DEcEMBER 19Bg

exact file named contained the original FA/FM font file.
To get around this problem and to satisfy the first require-
ment, the directory structure used for FA/FM fonts was
modified. It was decided that any directory that had old-
style FA/FM font files in it would have a subdirectory
named SNF. This SNF directory would contain analogs to
the FA/FM font files, but in the X font format. Fig. B shows
the old and new directories formats.

With this scheme, all of the old-format FA/FM font files
can remain untouched, and the modified directory struc-
ture satisfies the first requirement.

To meet the second requirement, the method used by
the font loader to find a font had to be expanded to accom-
modate the new directory structure. Instead of just accept-
ing the pathname given it, it had to be able to search a little
further. Thus, the first step of the loader process was ex-
panded to:

Look at the name given
If val id font f i le, load i t
else

insert "/SNF" into path
look for val id font in this path
if found. load i t
else error

With the new font loader, fonts need to be loaded into
memory only once no matter how many applications are
using them. Backwards compatibility with the old FA/FM
system is preserved. The X server and the FA/FM system
now share the source code to accomplish font loading, thus
ensuring compatibility and reducing maintenance require-
ments.

Sharing the Color Map

One of the recurring themes of the Starbase/X11 merge
project was how to make X and Starbase share resources

(a)

/usr/l ibkaster/

I',i"
I

lp.8U

/usr/l ib/raster/

I
I
I

6x8/

lp-8u SNF/
I

I
I
I

tp.8U.snf + X Fonl
(b)

Fig. 8. fhe old (a) and new (b) directory structures used to
find and load FAIFM fonts.

that they previously believed they each controlled exclu-
sively. One of these resources that had to be arbitrated was
the color map and display controls like display enables
and bl ink control.

Notions of Color Map
The X concept of a color map was modif ied quite a bit

from Version 10 to Version tt of the X Window System.
In Version 10 there was a single color map that every cl ient
al located colors from. When al l of the colors were used,
the cl ient simply made do with what i t had or exited. In
Version 11 , the concept of a virtual color map was designed.
Mult iple color maps can be created regardless of how many
color maps the hardware can support. In fact, every window
can have a dif ferent color map. The color maps get instal led
by a window manager according to some pol icy usually
establ ished by the user. This way, every window can use
the entire range of colors that a part icular display has to
offer. Fig. 9 i l lustrates the concept of virtual color maps.

Starbase, on the other hand, maintains the single color
map notion. Starbase is designed to bel ieve that i t is always
running to a raw display device and that i t has complete
control over the device. I t also assumes that there is a single
hardware color map and that i t wri tes direct ly to i t .

The Needs
The solution for the X server sharing the color map with

a Starbase application was simple. Every time a Starbase
application opens a window and requests that the color
map be initialized, a new X color map is created for that
window. In this way, Starbase applications that bel ieve
that they have complete control over the color map can
run without modification. This solution easily takes care
of the problem of how to emulate a single hardware color
map with exclusive access for a Starbase application.

This solution does not answer the question of how Star-
base applications can read from and write to the color map
or how Starbase can share the color map with other X
applications. The first option explored was to have Starbase
use the standard X color map calls. There were a number
of problems with this option. Starbase has a different notion

than X does of how some color maps look. For example,
in X i t is possible to write only to the red bank of a part icular
color map entry. This is not true of Starbase. For example,
for 24-bit displays, Starbase looks at the color map as a
single 256-entry array of RGB values that can only be writ-
ten as tuples. X views this same color map as three separate
banks of color maps, representing the red, green, and blue
banks of entr ies.

There was also the question of performance. Some Star-
base applications use rapid alterat ions of the color map to
achieve certain visual effects. Using the X color map mech-
anisms, the overhead of X server communication might
prove to be a bott leneck for performance.

Final ly, Starbase al lows the manipulat ion of more than
just the values of the color map, The shared memory version
of the X color map includes addit ional attr ibutes such as
the display enable, color bl inking, and color map blending.
Also, information about transparent colors is included in
overlay plane color maps. None of this information can be
manipulated using the standard X color faci l i t ies.

The Solution
The design team agreed that Starbase's needs were

beyond the capabilities provided by X and a new approach
was needed. The approach finally agreed on was for each
X color map to have an analog that the X and Starbase
display drivers dealt with called a display state (see Fig.
10). These display states are created in shared memory
every time a new X color map is created, and they can be
manipulated by X or directly by Starbase clients. As infor-
mation is written to the display state by a display driver,
the display state is checked to see if it is installed in the
hardware. If it is, then the hardware values and the display
state are changed. If not, then only the software values in
the display state are changed.

Since the display state is in the shared memory and is
managed by the graphics resource manager, Starbase appli-
cations can now manipulate it. Now when a Starbase appli-
cations opens a window and requests initialization, the
driver performs the following operations:
r Create an X color map (this operation creates a display

Virtual Color Maps (Contain
lmages of what Hardware
Color Map Should Look Like)

(Window Manager Controls
which Color Map ls Loaded into
the Hardware)

One Hardware Color Map and Associated Registers
(Contains Two Types of Information:

Plane Information and

Fig.9. Virtual color maps.

DEcEMBER 1989 HEWLETT-pAcKARD JoURNAL 29

the Color Table)

Display

Display State (Shared Memory)

I

I

Fig. 10. The architecture for sharing the color map in Star-
baselXl l .

state in shared memo.ry).
Associate the color map with the X window.
Establish pointers to the shared memory display state
data structure.
Initialize the display state.
Whenever a Starbase application makes changes to the

display state, the Starbase driver does so directly, not using
the X color map routines. In this way, it is not slowed by
the overhead of the X server communication mechanism.
And since the Starbase driver creates its own color map,
it assumes that it can do anything with it that could nor-
mally be done with the hardware color map.

When a window is opened without the lN|T* flag, Starbase
asks the X server which color map is associated with the
window. It then connects to the display state of that color
map in shared memory. In this mode Starbase respects the
restrictions placed on the color maps by the X server pro-

tocol. For example, Starbase will not change a color map
cell if the X server has marked it as read-only. The X server
also does not allow a Starbase program to change the dis-
play enable register. This allows a Starbase application to
continue to use Starbase library calls to modify the color
map, but still cooperate fully with other X clients.

Only one problem was left to resolve: how to communi-
cate changes made by Starbase applications to the shared
display state data structure to the X server? An X server
extension called xxesynchronizeOolorRange was created to
solve this problem. When a Starbase display driver alters
the values in a display state, it then calls this extension
routine. The X server then reads the current values of the
display state and updates its notion of the color map's
contents.

'lNlT is a standard flag used with gopen that implies clearing of the open display planes
and the init ialization of the color map to Starbase default values.

30 HEWLEfi-pAcKARD JoUBNAL DEoEr\,4BER 1989

Backing Store

The backing store is a piece of memory where the con-
tents of a window are backed up in case the window gets
destroyed or obscured by some user action, such as iconifi-
cation or resizing, or by the action of another program. The
X server supports backing store on a per-window basis. If
an X client requests the server to maintain a backing store
for an window, the server will do so, if possible.

Fig. 1 1 illustrates the use of backing store in the standard
X environment. The contents of a window and its backing
store are shown in different frames. Assume initially that
window A is completely visible and has a picture of an
arrow on the screen. At this stage its backing store is empty
(frame 1). When window B is placed on top of window A,
window A is obscured and the picture in the obscured
region is damaged. If window A was created with a backing
store, the server will intervene before the damage takes
place. When the server realizes that the surface of window
A is going to be encroached upon by some other window,
the server saves the picture from window A to its backing
store (frame 2). When window B is removed, the picture
in the unobscured region of the window A has to be updated
(frame 3). If window A has a backing store, the server copies
the appropriate region from the backing store and recreates
the picture in window A (frame 4).

If window A has no backing store, then the only way of
updating the picture would be to send an expose event
notice to the client owning window A. The expose event
tells the client that a region or regions of its window have

Screen

1 .

Fig. 11. Views of a window and its backing store. ln frame
1 window A is completely visible and backing store is empty,
in frame 2 window A is partially obscured by window B. ln
frame 3 window A is unobscured and part of the screen
picture is missing, and in frame 4 the missing part of the
picture is copied from backing store lo window A without
intervention by the client.

Backing Slore

I

4.

become exposed, that is, the picture contained in that reg-

ion may have become inconsistent. I f the cl ient chooses

to, i t can update the picture by sending appropriate render-

ing instructions to the server. In many graphics applica-
t ions, i t ends up redrawing al l objects in the window even

though only a small part of the window may have been

damaged.
For complex applications, redrawing the entire window

is a t ime-consuming event. The standard X11 server does
not guarantee that al l implementations wil l support back-
ing store. The burden of redrawing a window is left to the
X cl ients. Al l X appl icat ions must be knowledgeable about
expose events and must be able to deal with them.

The Starbase/X11 server, however, must provide backing

store support and cannot depend on the cl ients'abi l i ty to

deal with expose events, since the Starbase l ibraries and

most Starbase applications have no notion of expose events

and do not know how to handle them. A Starbase applica-

t ion running in an X window would be unable to refresh

a window after the window became unobscured, so the X

server must update i t from the backing store. The X server
not only must support backing store, i t must also make the

backing store a sharable object between i ts own display

drivers and the Starbase display drivers. Therefore, the

Starbase/X11 X server employs "smart" rendering func-

tions to share the backing store between the X and Starbase
applications.

HP support of the backing store capabil i ty in the X server
dates back to the days of Version t0 of the X Window
System. In the HP implementation of the X10 server this
capabil i ty was cal led the retained raster faci l i ty.

The Starbase/X11 version of the X server operation of
backing store was guided by two considerations:
I Operations involving backing store should be as fast as

possible.
I In a window with backing store a pixel must never be

rendered twice. If the pixel is in the visible portion of
the window, it must be rendered on the screen; otherwise
it will be rendered in the backing store.

Allocation Policy
The backing store of a window is always of the same size

as the window it is backing up. The X server always tries

to accommodate the backing store in the offscreen frame
buffer. With the assistance of the display hardware, oper-
ations on backing store resident in the offscreen frame buf-
fer are as fast as those on the screen. However. the frame
buffer is a limited resource, and there will be occasions
when there will not be enough space in the frame buffer
for a backing store operation. When this happens, the X
server will place the backing store in the virtual memory.

Direct hardware access windows (DHA windows) are
shared between the X server and the Starbase application.
If at any time in its life a DHA window is declared to be
a backing store window, the X server will ask the graphics

resource manager for a portion of offscreen memory large
enough to fit the window. If none exists, the X server will
ask the GRM for a portion of shared memory so that both
the X server and the Starbase application can render to the
shared backing store. However, like the frame buffer, shared
memory is also a limited resource. Thus, there is no guaran-

tee that sufficient space will be available in the shared
memory at the time the allocation request is made to the
GRM. If the GRM cannot provide the needed amount of
shared memory, the server will declare the DHA window
to have no backing store.

MOMA windows are never provided with backing store.
MOMA windows employ transform engines in the
hardware to accelerate their rendering performance. There
is no way to take advantage of the hardware transform
engines to render to the backing store i f the latter is in
virtual memory. Since we cannot guarantee that the backing
store wil l be in offscreen memory, the X server does not
support backing store for MOMA windows. Therefore, i f a
window with backing store becomes a MOMA window,
the X server wil l dispose of i ts backing store.

Smart Driver Functions
The X server employs smart driver functions to render

to i ts drawables. A drawable is a two-dimensional window
or a pixmap that X and Starbase can draw on and treat as
a single unit . These driver functions are cal led smart be-
cause they can distinguish between different types of draw-
ables, such as windows without backing store, windows
with backing store in frame buffer, windows with backing
store in virtual memory, and pixmaps in virtual memory.

When a smart driver function is called to render to a
window, the function can determine whether the window
has a backing store. I f the window has a backing store the
driver can determine the location of the backing store,
which can be in the frame buffer, virtual memory, or GRM
shared memory. Further, the driver can figure out which
parts of the backing store represent obscured regions of the
window. With this knowiedge, the smart functions render
the necessary pixels either on the screen or in the backing
store. It is never necessary to render to a pixel twice.

To make backing store sharable between X and a DHA
Starbase client, the X server HP extension XHPRegisterWin-
dow$ is used to create the backing store object shown in
Fig. 4. The following information is contained in this object:
r Drawable Type (drawable-type). An integer flag represent-

ing the backing store attributes of the window. The val-
ues indicate whether the window has backing store and
whether it is located in the offscreen frame buffer mem-
ory, virtual memory, or GRM shared memory.

r Backing Store Stamp (bs-stamp). An integer counter that
is incremented whenever the state of the window's back-
ing store changes. This is a trigger to the client that it
needs to obtain new backing store information from the
shared memory object.

I Shared Memory Offset (sm-offset). A pointer to the start
of backing store if it is located in shared memory. The
value of this pointer is an offset relative to the beginning
of the shared memory segment. The client must add its
own shared memory base address to determine the true
absolute address.

r Shared Memory Stride (sm-stride). An integer value rep-
resenting the width of the shared memory backing store
pixmap in bytes.

r Backing Store X Offset (bs-offset--x). An integer value rep-
resenting the frame buffer x offset of backing store if it
is in frame buffer offscreen memory.

DEcEtvlBER 1989 HEWLETT'pAcKARD JoURNAL 31

Backing Store Y Offset (bs-offset-y). An integer value rep-
resenting the frame buffer y offset of backing store if it
is in frame buffer offscreen memory.
Backing Store Planes (bs-planesJ. An integer bit mask rep-
resenting the display bit planes that are managed by
backing store.
Backing Store Pixel (bs pixelJ. An integer representing th"

(")

value to be placed in the bit planes not managed by
backing store.

Deep Backing Store
Starbase supports 24-plane deep windows. Therefore, it

was necessary to develop a method for the X server to
support a 24-bit-per-pixel backing store. The main problem
was determining how deep backing stores can be organized.
In 24-plane-deep displays, the frame buffer is organized as
three memory banks, each eight planes deep, The three
banks are the red, green, and blue banks. As long as the
backing store is placed in the frame buffer, there is no
problem. The RGB components of each pixel are stored in
the corresponding bank. There is a problem, however,
when the backing store must be placed in virtual or shared
memory.

In the X server, rendering to the virtual memory is done
using the memory drivers leveraged from the Starbase li-
brary. There are two main components of the memory
driver: the bit driver and the byte driver. The bit driver is
used to draw on one-bit-per-pixel virtual memory pixmaps,
and the byte-driver is used for one byte-per-pixel virtual
memory pixmaps. In implementing the deep backing store
we could have written a new memory driver for drawing
to 24-bit-per-pixel virtual memory pixmaps or organized
the deep backing store so that the existing memory drivers
could be used without any modif icat ion. We chose the
Iatter solut ion (see Fig. 12).

The organization of the deep virtual memory backing
store mirrors that of the deep frame buffer. The deep virtual
memory backing store is organized as three software banks,
each one byte deep, corresponding to RGB banks in the
hardware (see Fig. 12c). With this organization we are able
to use the byte drivers without any change. However, for
each drawing operation we call the byte driver three
times----once for each software bank. This organization also
simplifies the process of copying data from the virtual
memory backing store to the screen because the data from
a software bank is simply moved to the corresponding
hardware bank.

8 Planes Deep
Red Bank

Fig. 12. (a) A 24-plane-deep wrndow on the screen. Of
course the physical depth of display memory is not seen by
the user. (b) 24-plane-deep backing store in offscreen frame
buffer memory organized in three hardware banks of B planes
each. The picture on the display ts replicated on the three
banks. (c) 24-plane-deep backing store in virtual memory.
fhls ls a contiguous piece of memory organized in three
compartments. Each compartment is a software bank mirror-
ino the hardware banks.

(c)

32 rrwrrrr-pecKARD JoURNAL DFcEMBER r989

Sharing Overlay and lmage Planes
in the Starbase/Xl 1 Merge System
Developing a method to take full advantage of the
capabilities of display memory was one of the challenges
of the StarbaselXl l Merge proiect.

by Steven P. Hiebert, John J. Lang, and Keith A. Marchington

EPENDING ON THE DISPLAY DEVICE, the X server
allows users to configure a display in four funda-
mental display modes: image mode, overlay mode,

stacked mode, and combined mode (see Fig. 1). The display

mode determines how the hardware display memory is

used. This art icle describes the rat ionale for the dif ferent

display modes and how each of them works. The combined
mode is discussed in greater detai l than the others because

it is the most sophist icated mode and i t is avai lable on the

TurboSRX 3D graphics accelerator display system.
HP offers a wide variety of display hardware for i ts work-

stat ion products. This display hardware ranges from low-

resolut ion monochrome displays to high-resolut ion dis-
plays with 16 mil l ion colors and 3D accelerat ion hardware.

Using the ful l range of display capabil i ty in the display

hardware was one of the challenges for the Starbase/X1t
Merge design team.

One of the underlying phi losophies of the X Window

System is that i t provides the tools to bui ld dif ferent user

interfaces, but it does not enforce any particular user inter-

face standard, Thus X provides mechanisms, not pol icy.

To maintain this philosophy, it was decided that the X

server would provide the different display modes for the

X Window System and allow the user to choose the display

mode most appropriate for the application.

Overlay and Image Planes

All display systems for HP's workstat ions have at least
one and as many as 24 planes of display memory. In addi-
t ion, some of the more sophist icated display systems have
addit ional display memory cal led overlay planes. The over-
lay planes are so named because they appear on top of, or
over, the image planes. For example, i f the overlay planes
of a display are enabled and each pixel is set to black, then
the image planes would not be visible. Areas of the overlay
planes must be disabled or made transparent to view the
image planes. Overlay planes can be set to a transparent
color so that the image planes can be seen. Exist ing HP
displays have from zero to four overlay planes.

The image planes are used primari ly for rendering com-
plex images and usually have more capabilities than over-
lay planes. For example, on the TurboSRX display system,
the 3D accelerator can clip to an arbitrary set of rectangles
in the image planes, but not in the overlay planes. Overlay
planes have a number of uses, but primari ly they are used
to display information like text and menus. In this way

4 P lanes
Fig. 1. An illustration of the differ-
o n l r l i c n l n v m n d a ^ / ^ t l 6 ^ ^ ^
c t t L u t r P t a t , r , u v L J . l d . / I u d g Y

mode. All renderrng by X is done
only to the image planes of the
display. (b) Overlay mode. All X
rendering is done only to the over-
lay planes, and the image planes
can be used by other applications.
fo see whalls on the image planes

^'^ '^^ would have toL t l v u v c r r a y P l d t l v J I

be made transparent. (c) Stacked
screens mode. The overlay and
image planes arc treated as two
separate screens. (d) Combined
mode. lmplemented primarily to
support the display capabilities of
TurboSRX, the combined mode
uses lhe overlay and image
n/ :npq ns nnp qarpen.

DEcEN,4BER r989 HEWLETT-PAcKARD JoURNAL 33

(a) lmage Mode (b) Overlay Mode

(c) Stacked Screens Mode (d) Combined Mode

rendering in the image planes is not damaged by menus
or text, and costly redraws of pictures in the image planes
are prevented. With some 3D graphics or complicated 2D
graphics, such redraws can take many minutes.

The overlay and image planes are located in the frame
buffer and, as shown in Fig. 2, each plane is organized into
on-screen and offscreen memorv.

lmage Mode
Every HP display system supports the image mode and

all but the TurboSRX wil l default to image mode i f the user
does not specify a display mode. In the image mode, the
X server performs all rendering only on the image planes
available on the display device. I f the display device has
any overlay planes they are set to transparent in this mode.
See F ig . 1a .

Overlay Mode
The overlay mode is almost identical to the image mode,

except that the overlay planes of the display device are
used by X rendering calls, and the image planes are free
to be used by other applications such as Starbase graphics
applications. A good example of this configuration is the
HP 9000 Series 300 and 800 SRX (solids rendering acceler-
ation) display system. The 3D acceleration hardware of the
SRX is not capable of cl ipping to window boundaries, so
it is not useful in a window environment. For the 3D accel-
eration hardware to be useful, it must have unobstructed
access to the full, unobscured image planes. To run with
this hardware configuration, a window-based application
can provide al l user interface components (e.g., windows
and menus) in the overlay planes using the X display driver,
and use the 3D accelerator for more complex rendering in
the image planes. By creating a transparent window in the
overlay plane, or by setting the window system's root win-
dow to transparent, the image planes can be made viewable.
On the SRX display, this is the only way to use the 3D
graphics accelerator and a window system such as X at the
same t ime.

Stacked Screens Mode
In the stacked screens mode the overlay planes are used

as one screen and the image planes as another (see Fig.
1c). In this way, the window system has twice as much
screen "real estate." Stacked screens mode is literally the
image mode and overlay mode running simultaneously.
The screens are stacked one on top of the other with the
visible screen being the one where the mouse cursor is
located. To get from one screen to the other, the user simply
moves the mouse off the edge of the current screen. The
other screen is made visible as the mouse enters it. All of
the normal capabilities of X are available in both the image
and the overlay screens, and all of the restrictions of the
image and overlay modes apply.

Stacked screens mode is particularly popular with soft-
ware developers because it is possible to make twice as
much information easily viewable. This means that a de-
veloper can have a debugger, terminal emulators, editors,
code viewers and other applications all running at the same
time and viewable.

Combined Mode

Image, overlay, and stacked screens modes were avail-
able in the X Window System before the Starbase/X11
Merge project. However, the Starbase/X11 Merge project's
goal was to provide full-performance Starbase graphics in
X windows wherever possible, and since the TurboSRX
display, which is the successor to the SRX display system,
has the hardware necessary to do accelerated graphics in
windows, this meant that we needed to provide accelerated
graphics in windows as well. This could have been done
in image mode on the TurboSRX, but it would not have
been as aesthetically pleasing.

The design team decided that a new approach was
needed for the TurboSRX. This new approach is called the
combined mode. The combined mode uses all of the planes
of the display system (both image and overlay) as a single
screen, making it look to the application as if there were
simply one contiguous set of planes with a variety of differ-
ent capabil i t ies (see Fig. 1d). Using both the overlay and
the image planes as a single screen is basically the opposite
of how stacked mode works. In stacked mode the image
and overlay planes are treated as two separate screens.
With the combined mode the capabilities of the TurboSRX
and X can work together.

TurboSRX Gapabilities
Many of the capabilities provided by the HP 9000 Series

300 and 800 TurboSRX graphics subsystem are also provided
by its predecessor, the SRX. These capabilities include:
I Image Planes. There can be B to 24 planes of image mem-

ory plugged into the display system. The system can be
used as an eight-bit pseudocolor device (CMAP-NORMAL
mode) offering 256 colors simultaneously or as a 24-bit
color device (CMAP-FULL mode) offering over 16 million
colors simultaneously.

I Overlay Planes. Each display system has three or four
planes of memory that overlay (or are in front of) any
other display memory. The original intention for these
planes was to use them for floating text, cursors, or
menus.

r Double Buffering. The image planes can be partitioned
as pairs of banks in a variety of ways for double buffering.
The most common configurations are to divide them into
two eight-bit banks in CMAP-NORMAL mode and into two
12-bit banks in CMAP-FULL mode.

r Color Map Mode Hardware. The color map mode hard-
ware enables the display system to run either in the
CMAP-NORMAL mode or the CMAP-FULL mode. If 24 planes
of image memory are plugged into the display system,
in CMAP-NORMAL mode each pixel is interpreted by tak-
ing the eight-bit pixel value out of the low bank of display
memory and using it as an index into a table of RGB
(red, green, blue) values to determine what color a par-
ticular pixel on the display should be. In CMAP-FULL
mode, each of the three eight-bit banks of display mem-
ory is read to determine which red, green, and blue value
should be used on the display. By writing to a hardware
mode register, these modes can be dynamically switched
and different windows on the displav screen can be dis-

34 lEwrerr,pncrARD JoUBNAL DEcEMBER 1989

played in dif ferent color map modes.
r 3D Graphics f lardware. Both systems have the abi l i ty to

render complex 3D graphics, providing real ist ic images
on the display. The front cover of this issue shows an
example of the real ist ic images that can be produced
using combined mode on a TurboSRX display system.
The 3D images (car, engine, and gears) are located in thc
image plane, and the other i tems on the display are lo-
cated in the overlay plane.
Capabil i t ies avai lable in the TurboSRX but not in the

SRX include:
I Hardware Cursor. Tlvo planes of memory (in addit ion

to the overlay ancl image planes) are avai lable for the
display of r;ursors. This feature al lows a hardware cursor
to be placed on the display without disturbing the con-
tents of any of the image or overlay planes beneath i t .
The hardware cursor also offers the advantage of not
having to remove the cursor to render, since i t resides
in i ts own plane of display memory. Not removing the
cursor before rendering provides better performance for
render ing rou t ines .

r MOMA Window Support. From the perspective of the
Starbase/X11 Merge system, this is probably the most
signif icant feature on TurboSRX. MOMA (mult iple,
obscurable, nrovable, accelerated) window support al-
lows the TurboSRX accelerated graphics capabil i t ies to
be used in a windowed environment by providing spe-
cial cl ipping hardware. This cl ipping hardware al lows
the TurboSRX graphics accelerator to render only to the
exposed rectangles of a window. The TurboSRX hard-
ware has support for a maximum of 32 cl ipping rectan-
gles for MOMA windows, which is an adequate number
for most window systems, but a small number for the X
Window System.
With these TurboSRX features in mind, the design team

focused on designing the Starbase/X11 Merge system to
take full advantage of the hardware capabilities of the Tur-
boSRX. This resulted in the fol lowing design goals for the
combined display mode:
I Provide support for MOMA windows that would al low

Starbase applications to use the 3D graphics accelerator
in X windows.

r Support eight-bit and 24-bit color modes. Make B-bit
pseudocolor and 24-bit color with double buffering avai l-
able to appl icat ions.

: Maintain the visual aesthetics of the system. When pos-
sible, minimize the damaSe that different hardware
modes and different color maps cause to the appearance
of the display when they are displayed simultaneously.

I Provide a state-of-the-art X server implementation. Rec-
oncile the capabilities of the X Window System, Version
11 with the capabilities of TurboSRX.

The Architecture
With X11, a number of new concepts were introduced

to increase the capabilities of X such that it could be run
on the entire range of today's display hardware as well as
any future display hardware that might be developed. The
concept in X11 that is most important to the combined
mode is cal led the "visual." The visual is the mechanism
X uses to describe the capabilities of a particular display's

hardware. The visual structure includes:
r Class. The class describes how a color is mapped from

memory to the display. There are two major classes,
stat ic and dynamic, and subclasses of each. The subclass-
es include gray, mapped color, and decomposed color.
Stat ic and dynamic classes are defined at X server start-
up t ime. S ta t i c c lasses cannot be changed by app l ica t ion
programs, but dynamic classes are definable and change-
able in the application program. The gray subclass means
that al l the colors in the color map are shades of gray.
For the mapped color subclass, one-bvte pixel values
from the frarne buffer are used to index into a color map
of RGB tup les wh ich descr ibe the co lo r to be d isp layed
(see Fig. 3a). For the decomposed color subclass, a three-
byte pixel value is used to get the color value from the
color map. The f irst byte is used for red, the second byte
fo r g reen, and the las t by te fo r b lue (see F ig .3b) . The
mapped color subclass al lows up to 256 colors and the
decomposed subclass al lows up to 16 mil l ion colors.
Each entry in the color map table represents a color
intensity (shade), For instance, the value 10 might repre-
sent dim RGB intensit ies and 220 would represent bright
RGB intensit ies. These red, green, and blue intensit ies
are mixed together to produce the displayed color. Put-
t ing these attr ibutes of color maps together (class and
subclass) al lows the device to support up to six types of
color maps. Table I shows the X color map types.

Table I
X Color Map Types

Subclass Static

Gray StaticGray
Mapped Color StaticColor
DecomposedColor TrueColor

Dynamic

GrayScale
PseudoColor
DirectColor

Color map entries. The number of different color map
entr ies avai lable for use by cl ient appl icat ions
Bits of RGB information. How many bits of resolution
are avai lable to describe red, green, and blue color values.

Overlay Planes

\ : -

lmage Planes

\ . - . - - -

"a . . - " - . - " . . , *
i ----- - .o I

"__*ra _i' I

i l l l
t i "

- \ _1,)

lmage Planes

\ -:-,::--,;1

I ilta- - -,)
.-- 1---^i
{
I

L.--

(a) (b)

Offscreen Memory

lOn-screen (Visible) Memory

Fig. 2. The organtzation of the image planes in the frame
buffer. (a) A display system containing both image and over-
lay planes (e.9 , the HP 98550A Color Graphics Board). (b)
A display system with only image planes in the frame buffer
(e.g., the HP 98547A).

DECEI\,4BER 1989 HEWLETT-PACt<INO IOUNt.l lT 35

Red Green Blue
0
1

(a)

Color Values
(lntensities)

Three-
Byte
Pixel
Value

(b)

Green
O I
1 I
2 -
3 I
4 I
. I
. I
. I
. -

. -

. I

. I
253 Eil
254 -
255 I

Color Map

;i*,-a*i
a

a

a

255

0
1
2
3
4
a

a

a

a

0
1
2
3
4
a

!

a

a

a

a

a

254
255

Fig.3. (a) Mapped color subciass A one-byte ptxel value rs
used to tndex tnto the color map to obtain the RGB tuple. (b)
Decomposed color subc/ass. A three-byte pixel value con-
tains an tndex for each primarv color list tn the color map.

r Planes. The number of planes of display memory avail-
able on the display device.
XlL makes i t possible to have more than one of these

visuals available on a given screen at the same time. With
mult iple visuals, i t is possible to create a mode that incor-
porates the capabilities of both the image and the overlay
planes of the TurboSRX so that the full range of the dis-
play's capabil i t ies are avai lable to appl icat ions. We decided
to treat the image and overlay planes as a single screen
with the overlay planes represented by one three-or-four-
plane PseudoColor visual type. The number of planes is de-
pendent on how the user sets up the device file for them.
The image planes, with their CMAP-NoRMAL and cvnp-ruLL
modes, are al lowed to have either an eight-bit PseudoColor
visual type, a 24-bit Directcolor visual type, or both simul-
taneously. Another option allows an eight-bit double-buf-
fered PseudoColor visual type for image planes and a 12-bit
double-buffered Directcolor visual type for image planes.

In combined mode, the root window for the screen al-
ways resides in the overlay planes, and the overlay plane

visual is the default visual for the screen. Any client that
simply asks for a window to be created with the default
visual of the screen ends up residing in the overlay planes.

For an application to create a window in the image planes,

it has to request the visual information from the server and

36 HEwrrrr-pecrABD JoURNAL DEcEi,4BER 1989

specif ical ly request the desired visual type.
The color map modes CMAP_NORMAL and CMAP_FULL in

the image planes are handled through virtual color maps.
Virtual color maps are an image of what the window or
cl ient thinks the hardware color map looks l ike. As was
described in the art icle on shared display resources on
page 20, each color map in the Starbase/X11 Merge system
has an analog cal led a display state, which is used by the
display drivers. Each display state contains the current
color values for a device's color map, some device-specif ic
information about which planes of the display are enabled,
and in the case of the TurboSRX, the color map mode of
the hardware. X provides a way for a program to control
which color map is currently loaded into the hardware
(this is cal led val idating the color map). Usually a special
X client, such as a window manager, is the only program
that changes which color map is loaded (val idated). The
window manager may have several methods for the user
to specify which color map is loaded. Therefore, when the
color map for an eight-bit PseudoCcolor window is installed
in the image planes, the hardware will be switched to cMAp_
NORMAL mode, and when the color map for a 24-bit Di-
rectColor window is installed, the hardware will be switched
to CMAP-FULL mode. Fig. g on page 29 illustrates the virtual
color map concept.

The result of this approach is that most windows are
created in the overlay planes. Most X server clients such
as window managers and terminal emulators use the de-
fault visual. Applications that request visual types that are
in the image planes can change the color map in the image
planes and use one of the color map modes without affect-
ing the visual appearance of the windows in the overlay
planes. Most of this color map control was provided for
Starbase applications because they usually assume that
they can change the color map at wi l l . As a result a Starbase
application creates its own virtual memory color map for
a window that it opens.

This design allows the TurboSRX to be used in windows
and satisfies all of the design goals for the TurboSRX dis-
play driver in the X server. With most of the windows in
the overlay planes, their cl ipping regions do not have to
be included in the hardware clip list for the accelerator.
This helps us live with the 32-clip-rectangle restriction of
the TurboSRX and achieve the full performance of a Star-
base application running in X.

Having most of the commonly used windows in the over-
lay planes allows combined mode to maintain visual aes-
thetics at the highest possible level, while still allowing
both eight-bit and 24-bit windows in the image planes. As
a counterexample, take the case of image mode. If image
mode were to allow both eight-bit and z+-bit windows
simultaneously, one of those two visual types would have
to be the default. If an application created a window of a
visual type other than the default and its display state were
installed, it would change the hardware color map mode
and all of the windows of the default visual type would
become incorrect in appearance. In fact, the windows, in-
cluding the root window, would become completely inde-
cipherable. However, with combined mode, when the
hardware color map changes, the windows in the overlay
plane (where most appl icat ions reside) remain visual ly

Color Map

Red

I
I
Ir
I
I
I
I
G
-
I
I
I
I
I

Blue

I
EU
I
I
I
I
I
E
G
-
I
I
I
I
I

-)

Overlay Plane
Window on Top

New Stacking Order
lmage Plane
Window on Top

| = Window in lmage Plane
O = Window in Overlay Plane

Fig. 4. When the stacking order is changed, area X becomes
the newly exposed area tn the tmage plane. ln the ongtnal
clipping algorithm, besldes caustng area X ta be parntecl
transparent tn the overlay plane, the image plane is consrd,
ered to be damaged, causing the tmage plane to be cleared
to the background colar and an exposure event sent to the
client owning wrndow l. The client would then rerender area
X in the image plane.

correct and only image plane windows become visual ly
incorrect.

This design also provides a very straightforward view
for an X application. A cl ient appl icat ion can simply con-
nect to the server and request windows of the default type
and get windows in the overlay planes. Or, using the XGet-
Visual lnlo routine, the cl ient appl icat ion can interrogate the
server for al l of i ts visuals or a part icular visual i t is in-
terested in. The application never worries whether i t is in
overlay planes or image planes. The server automatical ly
places the window in the appropriate planes without inter-
v e l) t i o n b y t h e a p p l i c a t i o n .

lmplementation
The architecture described above f i ts very neatly into

the the X model, and for the most part, the implementation
of combined mode was straightforward. But there were
some challenges in the implementation that resulted in
some interesting solut ions. The two most chal lenging areas
were how to al low the user to see through the overlay plane
to the image plane windows and how to cl ip windows and
generate exposures for only those areas of windows that
were actual ly damaged by other windows. A window that
needs exposure is one that is covered up and needs to be
seen. To see a window that resides in the image planes,
the overlay planes must be made transparent. At first, creat-
ing this transparent hole seemed like a difficult task, but
as it turned out, the X server architecture allowed this to
be handled quite easi ly. Whenever an area of a window is
exposed, the server is required to paint the window's back-
ground. At this point, the X server determines if the win-
dow being painted is in the image planes, and i f i t is, simply
makes the same area of the overlay planes transparent. In
this way all visible regions of the image plane window
have a corresponding area in the overlay planes painted a
transparent color.

Combined Mode Clipping
To solve the problem of cl ipping windows and generating

exposures for damaged windows, and to make ful l use of
the capabil i t ies of the TurboSRX hardware, the cl ipping
algorithm used in the X server had to be modif ied. In the
original X server, the cl ipping algori thm made no dist inc-
t ion between overlay and image planes when computir-rg
cl ip l ists for windo', t ' 's. Lacking this dist inct ion, creating a
window in the overlay planes would cause the server to
conclude that any windows in the image planes obscured
by the overlay plane window were damaged. When the
overlay plane windor.t ' was moved or destroyed, newly ex-
posed areas of the image plane window would be clearecl
to the window's background color and an exposure event
would be sent to the cl ient owning the image plane win-
dow. The exposure event tel ls the cl ient that i t must re-
render to the image plane (see Fig. a). The modif icat ion of
the cl ipping algori thm al lows windows in the overlay
planes to be created and destroyed without affect ing win-
dows in the image planes.

For both cl ipping algori thms, new cl ip l ists are computed
whenever an action is taken that could change the cl ip l ist
(e.g., changing the stacking order of the windows on the
screen). The function xosValidateTreeQ is used to compute
the new cl ip l ists. xosValidateTreeQ adds the visible port ions
of any chi ldren of the parent window to be recl ipped back
into the parent window's cl ip l ist and then, passing the
parent 's cl ip l ist as the working universe, cal ls the routine
xosOomputeClipsf l to let each of the parent window's chi ldren,
and the chi ldren's chi ldren, and so on recompute their cl ip
l ists. The working universe includes the visible areas of
the parent window. Upon return from xosComputeClipsQ, the
working universe is the parent 's new cl ip l ist. By subtract-
ing the old cl ip l ist from the new cl ip l ist the parent can
compute which areas have been newly exposed. That is,
any area in the new cl ip l ist that is not in the old cl ip l ist
must be newly exposed.

The modif icat ion of the cl ipping algori thm to support
combined mode consists mainly of computing two cl ip
l ists for al l the windows on the screen. One set of cl ip l ists,
which we can cal l the old-style cl ip l ists, is generated based
on the unmodif ied cl ipping algori thm described above (i .e.,
these clip lists contain windows from both the image and
the overlay planes). The second set of cl ip l ists is computed
taking only the image plane windows into account (image-
only cl ip l ist). Within the X server, image plane windows
use the image only cl ip l ist as the default cl ip l ist, and the
overlay planes use the old-style clip list as the default.
Both image and overlay plane windows use the old-style
clip list for cursor removal. Since either type of window
can have children or subwindows of the other type, win-
dows on both planes must keep the image-only and old-
style cl ip l ists avai lable.

In the new combined mode algorithm, rendering to the
image plane is done only when there are changes to the
windows in that plane and not because of changes to win-
dows in the overlay plane. The image-only clip list is used
to handle rendering to image plane windows. The old-style
clip list is used to determine which areas of the overlay
plane windows must be painted transparent to expose win-
dows in the irnage plane.

DECEMBER i989 HEWLETT pacrnno lounner 37

Combined mode clipping allows rendering to an image
plane window while it is obscured by an overlay plane
window. Since the root window is always in the overlay
planes, rendering can even take place to an image plane
window that is iconified. The server must take care, how-
ever, to avoid rendering to areas of iconified image plane
windows used by other image plane windows. Image win-
dows that are not iconified are automatically removed from
the allowable rendering area by the old clipping method.
Extra programming was required to remove iconified image
plane windows from the allowable rendering areas of other
iconified image plane windows. That is, if two iconified
image plane windows overlap, neither may render to the

overlapping area. When one or the other of the iconified
windows is mapped, it will get an exposure event for that
overlapping area.

Conclusion
Combined mode is a solution to the complex problem

of how to support a high-end display system in the best
possible way. Combined mode offers some capabilities that
allow the TurboSRX display system to work at its full po-
tential in an X environment. With the addition of combined
mode, the X server now offers four different display modes
of operation to take full advantage of the broad range of
display hardware for HP workstations.

Sharing lnput Devices in the Starbase/Xl 1
Merge System
To provide supportforthe fullsetof HP input devices and
to provide access fo these devices for Starbase
applications running in the X environment, extensions were
added to the X core inout devices: the kevboard and the
pointer.

by lan A. Elliott and George M. Sachs

TANDARD X SERVERS SUPPORT two input de-
vices: the pointer (mouse, tablet, light pen, etc.) and
the keyboard. These devices are known as the core

input devices. The X server sends information from the
input devices to client programs in packets called "events. "

The keyboard generates key events, while the pointer gen-

erates button or motion events. These events contain infor-
mation that includes the absolute location in two dimen-
sions where the event occurred, the location relative to the
X window in which the event occurred, and a timestamp.
For key and button events, there is also a field that tells
which key or button was pressed.

In a typical X environment, multiple application pro-
grams called clients run simultaneously. Each has its own
window or set of windows and all share the core input
devices. The X server arbitrates which client gets a particu-
lar input event by determining which window has the
"input focus." The focus window, which is the window
that is allowed to receive input from input devices, is nor-
mally either the smallest window that contains the pointer,
or is an arbitrary window explicitly established as the focus
window by a protocol request made by a client program.

We faced two major problems in the area of input device
support for Starbase/X11 Merge: how to provide the ability
to use the full set of Hewlett-Packard input devices in an

38 HEWLEfi PACKABD JoURNAL DEoEMBER 1989

X environment, and how to access those devices through
Starbase in that environment. The first problem arose be-
cause there is currently no X standard for using other input
devices in addition to the core devices. If additional devices
were supported, there is no provision within the defined
core events for determining which device generated the
event. There is also no provision in the existing events for
reporting data of more than two dimensions, or motion
data whose resolution is different from that of the screen.
The problem with Starbase was that prior to this project,
Starbase did not provide a way for multiple programs to
share input devices. The only input devices that could be
shared were those for which a window system arbitrated
the sharing and allowed Starbase input. These devices in-
cluded the HP Windows/9000 locator and the X Version
10 pointer and keyboard.

To overcome these problems the goals established to pro-

vide sharing of input devices in the Starbase/X11 Merge
system included:
r Support a wider range of input devices including the

core devices, and ensure that all the devices supported
have the same functionality as that provided by the core
devices.

r Support all input devices that follow the HP-HIL (Hew-

lett-Packard Human Interface Link) specificationl and

X Input Protocol and X Input Extensions

The core protocol of the X Window System provides a standard
syntax for making requests to the X servers. The syntax describes
the sequence of bytes that make up each of the protocol requests
For example, the XsettnputFocus request, which al lows a cl ient to
choose which window should receive input from the keyboard,
has the fol lowing format:

X was designed to al low individual vendors such as Hewlett-
Packard to extend the protocol by defining new requests that
can be interpreted by X servers in the same way as standard X
requests. For example, the HP input extension provides a pro-
tocol request named XHPsetDeviceFocus. This request al lows a
cl ient program to choose which window should receive input
from some input device other than the keyboard or mouse. The
request has the fol lowing format:Length

(bytes)

1
1
2

4
4

Mean rng

Xset lnputFocus Request I D
Bevert-to-Window Paramete r
Request Length (in four-byte

woros)
Focus-Window Parameter
Focus-Time Parameter

The information in a protocol request l ike the one above tel ls
what request is being made (XsetlnputFocus), the length of the
request (three tour'byte words, or 12 bytes), and the values of
any parameters the request has. The parameters in the request
specify which window should receive input from the keyboard
(the Focus-Window parameter), which window should receive input
iJ the focus window disappears (Revert-to-Window parameter), and
when the XsetlnputFocus request should take effect (Focus-Time
parameter). The 0, 1 and 2 values in the parameters are special
constants that indicate no window. whichever window contains
the X pointer, and whichever window was named as the parent
of the focus window, respectively.

The request begins with a number that identi f ies the extension
that implements the request and dist inguishes the request from
core protocol requests. The next byte identi f ies the request within
the extension. The length, Focus-Window, Focus-Time, and Revert{o-
Window parameters serve the same purpose as they do for the
XSetlnputFocus request described above. The Focus-Device param-
eter identi f ies the input device for which the cl ient program mak-
ing the request wishes to control the destination of the input.

Va lue

42
O , 1 , o r 2
3

0 , 1 , o r a W i n d o w l D
Timestamp Inlormation

Length Value
(bytes)

1 128 < Number< 255
1 B
2 5

4 0 , 1 , o r a W i n d o w l D
4 Device ldenti f ier
4 Timestamplnformation
1 0 , 1 , o r 2
3 Unused Bytes

Mean ing

lD o f HP Input Ex tens ion
XHPSetDeviceFocus Request I D
Request Length (in four-byte

woros)
Focus-Window Paramete r
Focus-Device Parameter
Focus-Time Parameter
Revert-to-Window Parameter

are supported by the HP-UX operating system.
I Al low the choice of the core devices to be easi ly config-

ured and provide reasonable defaults i f no choice is
made.
For Starbase applications the fol lowing addit ional goals

were establ ished:
I Provide ful l functional i ty for Starbase applications using

input devices in an X window.
r Ensure that the design does not require source code

chAnges in the Starbase application, except for the pos-
sible exception of the cal l to the gopen function which
is used to open an input device.

r Al low mult iple programs to access and share the same
input devices simultaneously.

HP-HlL Input Devices
HP-HIL input devices are grouped into three general

categories by the Starbase/X11 server. First, there are
keyboards and keyboard-like devices such as all of the
different HP language keyboards, the HP 92916A Bar Code
Reader, and the HP 46086A 32-Button Box programmable
function keys. These devices either generate keycode data,
or as in the case of the barcode reader, generate USASCII
data which can be translated to keycodes. The second group
of input devices are those that generate absolute positional
data as well as button information. These include graphics
tablets and touchscreens. The existing devices of this type
report absolute positions for two axes, and may report zero,

one, three, or four buttons. The third group of input devices
are those that generate relat ive motion data. These include
two-button and three-button HP-HIL mice such as the HP
46095A 3-Button (quadrature) Mouse, the M130SA
Trackball , the HP 4608SA Control Dial Module (nine-knob

box), and the HP 46083A Knob (one-knob box). The exist ing
devices of this type may report two or three axes of motion
and report zero, two, or three buttons.

There are a few HP-HIL devices that are not easily
categorized. For example, the HP 46084A ID Module,
which is used to prevent unauthorized software duplica-
t ion, does not generate any input, but occupies a posit ion
on the HP-HIL. It currently cannot be accessed through the
X server. A client program can access it directly, but not
across a network. Audio extension modules, such as the
HP 46082A, do not occupy a posit ion on the HP-HIL, but
X functions exist to access the beeper contained in the
module.

Core Input Devices
Up to seven input devices can be attached to one HP-HIL.

There is no standard definition in X for determining which
of those devices should be used as the pointer or the
keyboard. In Starbase/X11 Merge, explicit specification oI
the core devices is done through a configuration file. The
name of the configuration file is constructed using the dis-
play number specified by the user when X is invoked.
Because that number is under the control of the user, mul-

DEcEN4BER i9B9 HEWLETT-pAcrnno lounur 39

tiple configuration files with different names can exist and
can be used to specify different input devices as the core
devices. When a device is chosen, i t can be specif ied either
by giving the name of its device file and its intended use,
or by giving an ordinal position (first, second, etc.) and the
type of device, along with i ts intended use. The posit ion
of the device is relative to other input devices of the same
type on the HP-HIL, with the first device being the one
closest to the computer. For example, a graphics tablet can
be specified as the pointer device with a line in the config-
uration file of the form /dev/hil2 pointer, or with a line of the
form first tablet pointer.

It is possible to specify explicitly that the server operate
with no pointer device or no keyboard device, or both. In
addition, the keyboard can be specified as the keyboard
device and the pointer device. This feature is provided for
working environments where it is not desirable to have a
separate pointer device. If a keyboard is used as the pointer
device, the user can specify in the X server configuration
file which keys cause the pointer to move and the mag-
nitude of movement. These keys are taken over by X and
are not available for use by client programs. To prevent
conflicts in the use of these keys between X and client
programs, it is possible to specify that the keys should be
used for pointer movement only if a specified set of the
modifier keys (e.g., left stritt, right shift, CTRL, left Exrend
char and right Extend char) are pressed at the same time.
The user can also specify which keys should be interpreted
as buttons for the pointer device.

Default choices for the core devices reflect the devices
most commonly used as the default keyboard or pointer
device. For example, if a keyboard is attached to the HP-HIL
and can be opened by the X server, it is used as the keyboard
device. If more than one keyboard is attached, the last one,
that is, the one most distant from the computer on the
HP-HIL, is used. I f no keyboard can be opened by the server,
the last key device, such as a barcode reader or 32-button
module, is used. For the default core pointer device, i f an
HP-HIL mouse is attached to the HP-HIL, it is used as the
pointer device. If no mouse can be opened by the server,
the last device on the HP-HIL that can generate motion
data is used. I f no such device can be found, the keyboard
is used as the pointer device. If the motion device chosen
is one that can report more than two axes of motion, axes
beyond the first two are ignored.

Some addit ional functional i ty was provided for HP 9000
Series 800 Computers. These machines are capable of sup-
porting up to four HP-HIL loops, each of which can be
associated with a set of input devices. Our goal for these
machines was to provide maximum flexibility in specifying
input devices while still providing reasonable defaults if
no specif icat ion is made. The method chosen provides a
default based on the display number specif ied when X is
invoked. This display number is used to determine which
configuration files are used in initializing the server.

The user can specify an HP-UX path to be searched for
all input devices or the path to be used for an individual
input device. This functionality was implemented to allow
the HP-HIL path to be explicitly chosen on HP 9000 Series
800 computers. However, it also proved useful during proj-
ect testing. A test tool that was written to simulate HP-HIL

40 HEWLEfT-PACKARD JOURNAL DECEI\,1BER 1989

driver input used this feature to simulate input from vari-
ous input devices. The result was greater flexibility in test-
ing various combinations of hardware. See the article on
page 42 for more information about project testing.

HP Input Extensions
Although the core protocol of the X Window System is

standard across all vendors, X was also designed to allow
individual vendors to implement extensions to that pro-
tocol. This al lows vendors to add functions that are specif ic
to their hardware or software requirements, or that are not
included in the core protocol. If these extensions are found
to be useful for the general X community, a procedure
exists to propose them as standards to be included in future
releases of X.

This was the method chosen to add support for HP-HIL
devices within the X server. I t provided a solut ion that met
the needs of X cl ients, while also providing Starbase drivers
with information from input devices that could not be re-
ported through the core X protocol. See the box on page
39 for an example of X protocol and X extension format.

There are two parts to most X extensions: library func-
tions to invoke the protocol requests it defines, and a server
portion to process the requests and implement the func-
tions. The X protocol defines the format of requests in the
X library. An input X extension is more complicated than
other X extensions because it also involves the creation of
new input events, code to generate the events within the
server, a means to al low cl ients to ask to receive those
events, and code to route the events to the appropriate
cl ients. Unlike many extensions, input X extensions re-
quire addit ions to both the device independent and device
dependent port ions of the server.

To provide functionality equivalent to that provided for
the core devices, it was necessary to implement protocol
requests that are analogous to core protocol requests and
also allow the user to specify which device should be manip-
ulated. These functions include the ability to select input
events from a device, control the focus of that device, and
"grab" (temporarily take exclusive control of) a device.

Other necessary functions include those that allow a
cl ient to l ist al l the input devices avai lable to the X server,
and functions to enable and disable those devices. Also,
input events for this extension were defined so that more
than two dimensions of motion data could be reported.

Technical lssues and Trade-offs
The major input extension implementation issue we en-

countered was how to treat input devices other than the
pointer that report motion data. The position of a typical
pointer, such as a mouse, is tracked by the server and a
cursor is echoed at that position on the display by the
server. A keyboard takes its position from the pointer, and
its focus is either explicitly set or is determined by the
position of the pointer. * It was obvious that additional key
devices should be treated like the keyboard, but it was not
obvious how additional motion devices should be treated.

The alternatives were either to treat all devices supported
through the extension like the keyboard or to treat addi-

.When a keyboard key is pressed, one of the parameters returned to the application is a
pointer (cursor) position.

t ional motion devices l ike the pointer. I f they were al l
treated l ike the pointer, the server would have to track their
posit ion and echo a cursor for them, and not al low their
focus to be expl ici t ly set by the cl ient. I f they were abscl lute
devices, their input would have to be scaled to the screen.
If instead they were treated l ike the keyboard, the server
wou ld no t have to t rack the i r pos i t ion ind iv idua l l y bu t
would take i t from the posit ion of the pointer. The server
would not echo a cursor for them, but would leave that up
to cl ients and al low their focus to be expl ici t ly set. To give
c l ien ts max imum f lex ib i l i t y , i t was dec ided to t rea t a l l
dev ices suppor ted th roughthe ex tens ion l i ke the keyboard .

Input Devices and Starbase
The Starbase l ibrary provides functions to open input

devi<;es and to receive two- or three-dimensional world-
coord ina te input . Severa l dev ice dr ivers ex is t tha t a l low
Starbase to receive input from dif ferent devices or from
the same device in dif ferent environments. In some of these
environments, access to input devices has been exclusive,
al lowing only one program at a t ime to open and access a
device. Shared devices for Starbase applications have been
supported under previous HP window systems, but only
for a pointer and a keyboard. Therefore, the maior Starbase
contr ibution to this project has been providing the abi l i ty
for mult iple programs to share al l input devices.

At f i rst i t was not known how to achieve the desired
device sharing functional i ty. However, once i t was deter-
mined that an input extension would be provided, the basic
approach was to provide device driver code that uses either
core or X extension Xl ib cal ls to obtain input from the
requested devices. In this manner, the X server provides

shared access to al l devices for both Starbase and X cl ients
(see Fig.1). The X server arbitrates the sharing of input
devices between programs, and applies normal focus rules
to Starbase and X programs. The new device driver code
is similar to the exist ing Starbase HP-HIL driver code, dif-
fering only in how it obtains input from a device.

The syntax of the gopen request, which describes the input
dev ice to be opened, was enhanced to a l low the spec i f i ca-
t ion o f an input c lev ice and w indow combina t ion . Th is
al lows the driver to make a request in the form expected
by the X server to open that device and request input frorn
it . Since manv Starbase programs specify this inforrnation
through HP-tJX errvironment variables or program param-
eters, they can take advantage of the enhanced syntax with-
out changing the sclurce code of the program.

It was possible to access the core input devices through
Starbase input requests in previous releases of X, and com-
patibi l i ty has been maintained so that cl ient programs can
continue to access these devices as before. However, in
previous releases of X, except for the keyboard and pointer,
i t was not possible to access input devices in a manner
that would al low them to be shared among programs. Also,
i t was not possible to access them across a network. As a
result of this project, programs can take ful l advantage of
the window system and network, while continuing to use
addit ional devices and access them for Starbase inout.

Direct Access to lnput Devices
Client programs can open and access input devices di-

rect ly that are not in use by the X server. This al lows a
program that was not writ ten for a windowed environment
to continue to work. However, only one instance of that
program can be run at a t ime, thus preventing other X
clients from using that device. Although a good feature for
existing programs that do not require a windowed environ-
ment, direct accessing of input devices is not a recom-
mended practice for any newly writ ten or ported programs.

The core pointer and keyboard devices cannot be directly
accessed by cl ient programs, since the X server opens those
devices.

Conclusion
The result of this project is that existing applications are

supported, and an easy transit ion to a windowed environ-
ment is provided for them. As shown by Fig. 1, programs
have a number of optional ways to access the input devices.
Exclusive access to input devices other than the core de-
vices is supported, although not recommended for new
clients. Shared access through X libraries is supported for
both core and extension input devices. Shared access
through Starbase input routines is supported for both core
and extension input devices, and is provided in a way that
minimizes changes to existing Starbase programs.

Acknowledgments
Mike Stroyan created the original Starbase input tracking

mechanism and helped in developing the Merge input
model.

Reference
1. R.S. Starr, "The Hewlett-Packard Human Interface Link," Hew-
lett-Pockord /ournol, Vol. 38, no. 6, fune 1987, pp. 8-12.

Shared
Starbase
Input

Fig. 1. Input data flow in the StarbaselXl 1 Merge X server

DEcEMBER i 989 HEWLETT-PAcKARD JoURNAL 41

Sharing Testing Responsibilities
in the Starbase/Xl 1 Merge System
The testing process for the Sfarbase/X11 Merge software
involved setting realizable quality goals, and using
extensive fesl suites and test tools to measure and automate
fhe process.

by John M. Brown and Thomas J. Gilg

ITH THE DEVELOPMENT OF the StarbaseiXll
Merge environment, new forms of testing had to
be considered. Before the Starbase/X11 Merge

project, the X test suites consisted of nearly 450 tests, and
the Starbase test suite contained nearly 400 tests run across
an average of 40 hardware configurations. The challenge
was to make the appropriate modifications to this extensive
set of tests to make them useful in the Starbase/X11 Merge
environment. In areas where the existing test suites were
inadequate, new test tools and tests had to be developed.

Test and Quality Goals
The combination of existing and new test suites needed

to ensure adequate code coverage. Adequate code coverage
in this context means exercising all procedural interfaces
(i .e., X and Starbase l ibrary cal ls), and the in-depth test ing
of each procedure. An HP software tool known as the
branch f low analyzer (BFA) was used to measure code
coverage. Code quality was measured in terms of defect
densities and defect arrival rates. The project quality goals
were stated in terms of acceptable defect densities (defects
per 10 KNCSS*) for each class of defect severity. Further-
more, defect arrival rates (defects per 1,000 test hours) were
closely monitored throughout the project, and objectives
were set to achieve specific diminishing arrival rates at
project checkpoints.

Strategy
Existing test technologies for X and Starbase were re-

viewed for their suitability in testing the Starbase/X11
Merge system. In several cases, the existing technologies
and their related test suites required no modifications. In
other cases, weaknesses were identified and an effort was
undertaken to enhance the remaining test tools and test
suites. With nearly 850 pre-Starbase/X11 Merge tests and
several hundred megabytes worth of time-proven archives,
the value of such an undertaking was obvious. Two test
strategies were undertaken. First, new tests were developed
that could be directly incorporated into the existing test
suites. Second, for all the test scenarios not covered, new
test tools and tests were developed.

In all cases, a high priority was placed on the automation
of tests. A best-case scenario was envisioned in which all
the code changes, delet ions, and addit ions developed in

.Thousands of noncomment source statements

42 Hewrerr-pecKAnD JoURNAL DECEMBER r989

one day would be tested overnight on all available re-
sources, and a summary of the test results would be gener-
ated automatically for inspection by the engineers the fol-
lowing day. In addition to the testing effort, code reviews
helped round out the quality assurance effort. A code re-
view or code walkthrough was conducted for each new
code module. Attendance included the code author, a mod-
erator or code reader, and several reviewing engineers.

Testing Measures
To help guide the testing effort, several test and quality

metrics were identi f ied and used. These metrics include:
! Branch Flow Analyzer (BFA) Coverage. The branch f low

analyzer provides a measure of how well al l the code in
the software under test is exercised (covered) during the
testing effort. To use the BFA, the source file to be tested
is run through a BFA preprocessor which places counters
at al l condit ional statements and at the beginning of al l
procedures (see Fig 1a). The source f i le produced by the
preprocessor is then compiled in a standard manner.
When the program is run, the counters embedded in the
code update an external disk-based data base, which can
later be analyzed. Analysis of the BFA data base provides
a summary of which procedures are called and a break-
down for each procedure is given showing which condi-
tional paths were executed, or more important, missed
(see Fig. 1b). The BFA tool identi f ied unexercised sec-
t ions of code to be targeted when writ ing new tests.

r Defect Density. To measure the current product quality,

the defect density described the expected number of se-
veri ty weighted defects (cri t ical, serious, low) per 10
KNCSS,

r Defect Arrival Rate. As a way to sense trends in quality,

the defect arrival rate described the number of defects
found per 1000 hours of test ing.

I Continuous Hours of Operation. A continuous hours of
operation test was frequently executed to give an indica-
tion of X server robustness, and to reveal any long-term
execution side effects (e.g., memory ut i l izat ion growth).

Engineer Test Suites
The end users for the Starbase/X11 Merge product are

software engineers who develop high-performance graphics

applications running in windowed environments. With

extdn btrrscord 0;
.rtom btercport 0;

maln (argc, .rgv)
Inl lrgc;
char'ergvo;

bfrroco.d ("meln',1);

char llne n(x)01,
.!;

long llneno = 0;
Inl orcepl = 0, numb€r = 0;

whllo (-rtgc > 0 && ('++argv) l0l == '-)
{

bferecord ("mein",2);
for (s = argv [0]+l; 's != '\0'; s++] {

rtar*ord ("maln",3);
swttch (.s)

L*', ,
btarcord ("main".4):
6xept = 1;
break;

6 S ' n ' :
btarecord ("maln",5);
number = t;
brurk;

detsult:
bfarscord ("mdn", 6);
prlntt("tlnd: illegal opllon %cu",'s);
trgc = 0;
break;

l
l

{
l t (argc != l) {

blarecord ("maln",7);
prlnd ("Usge: tlnd -r -n patiernvr");

elsa[
bfareord ("main",8);
whlle getllne (line, 10OO) > 0 {

bfareord ("main". 9;
{

l lneno+ +;
lf ((lndex line, 'argv) >= 0) != exceptx

btaruord ("main",l0);

{
it (number) {

btareord {"m.in",11};
prlntl ("%1d:",1);

)
olse btarmrd("main",12);
prlntl C'%s",llneh

l
l
ds btarsord ("mrin",l 3);

l
l

l
l
ttsrcPort ('lrrepoi");

l

(a)
func t ion # t ioes ex is t ing l | beaoches X o f
naDe invoked bnanches hlt b.anches hit

this information we figured that some of the best test cases
could be leveraged from the engineers developing the Star-
base/X11 Merge code. Therefore, an effort was made to
formalize the process that engineers naturally go through
when trying a new version of the X server for the first time.
All engineers were required to develop a short list describ-
ing the types of tests they normally tr ied. When an integra-
t ion cycle approached, al l engineers ran through their mini-
suites and provided feedback. With l i t t le addit ional effort,
such test ing proved valuable.

Starbase Test Suite
The Starbase test suite has tradit ional ly been used to

perform testing of the Starbase graphics l ibrary on al l of
HP's supported graphics display devices and workstat ion
configurations. The test suite consists of nearly 400 test
programs, archive f i les of expected results, and various
shell scripts and C programs that control test suite automa-
t ion.

When a test program is run as part of an automated ses-
sion, the result ing standard output and errors are compared
against the expected result archives. In addit ion, represen-
tations of the various graphics images that may have been
generated by the test program are compared with the ar-
chives. Specific differences between actual and expected
results are noted in a test suite log f i le, and simple pass/fai l
information is placed in a summary file.

Before the Starbase/X11 Merge system, the test suite was
used to test Starbase running only on a raw display device
rather than in a windowed environment. With the advent
of the Starbase/X11 Merge system, there was a need to
enhance our Starbase testing approach to include not only
raw device testing, but also testing of Starbase in the X
Window System environment.

Starbase test programs in the Starbase/X11 Merge envi-
ronment take two basic forms:
I Window Naive. A window naive test can run either in

raw mode or in X. The test itself has no knowledge of
X, and does not create X windows i tself , but instead
relies on an outside mechanism to create the windows
and direct the test to those windows.

I Window Smart. A window smart test can only run in X.
By definition, a window smart program makes X calls,
and usually creates its own output windows.
The enhancements made to the Starbase test suite had

to be able to support both varieties of test programs. An
additional goal of the changes was to leverage as much of
the existing test suite as possible. To test window naive
Starbase programs, the test suite was modified so that it
could recreate various selected X window scenarios and
then run test programs in each scenario. Since window
naive programs can be run on a raw display or in an X
environment, we were able to use a set of the existing test
programs in these scenarios. Of course, new archives of
expected results had to be created for each scenario.

To cover window smart testing, an additional X window
scenario was used in the test suite. Also, since none of the
existing test suite programs contained both Starbase and
X library calls, a set of new test programs had to be written
to test this new functionality adequately. Areas of particu-
lar testing attention included text fonts, cursors and echoes,

na 1n

index

1 1 3 9 6 9

1 4 5 5 1 0 0

g e f l i n e 1 5 4 4

22 r8 82

A x pneced ing the func t lon name lnd ica tes the func t lon
was no t h i t

3 func t ions in the pnognam: 0 no t h i t
100X o f the func t ions were en te fed

Fig.1. (a) A BFA instrumented source file. The names of the
instrumented lunctions are highlighted. The underlined lines
of code were inserted by the BFA preprocessor. They are
calls to the routine btareco'd which handles the accounting on
the software being tested. (b) The summary test report pro-
vided by BFA after the instrumented program is run.

Tota ls

(b)

DEcEMBER 1 989 HEWLETT-pAcrnRo lountal 43

color map manipulat ion, backing store, double buffering,
and z-buffering.

Once the changes to the test suite were in place, the suite
was run nightly in a test center stocked with a complete
set of graphics display devices and workstat ion configura-
t ions. An addit ional set of tools was developed to gather
and report test results automatical ly from each configura-
t ion on a dai ly basis. This was done even during the latter
part of the Starbase/Xtt Merge project implementation
phase and it enabled developers to track the quality of their
code as it was being completed. During the testing and
release phases, the nightly test suite results helped ensure
continuing improvement in code quality and stability.

X Test Consortium Test Suites
Through HP's aff i l iat ion with the X Test Consort ium,

several X test suites were acquired. The Digital Equipment

Corporation's X test suite (nearly 350 tests) tests each cal l
available in the Xlib library. The tests themselves come in
two categories: good-only tests or centerl ine tests which
just test for expected functionality. Validate and error tests
expand on the centerl ine tests by checking for robustness
using inval id parameters and erroneous functional i ty.

The Sequent Computer Corporation, which is a member
of the X Test Consort ium, provided an X test suite that
consists of nearly 125 tests that exercise the server at the
X protocol level. The tests themselves do not use Xl ib, but
instead contain custom buffering routines to send X pro-
tocol requests to and receive repl ies from the server. The
obiect of these tests is to see how well the X server handles
malformed protocol packets not normally generated
through the X l ibrary cal ls.

Early in the testing effort, the decision was made to make
the X Test Consortium suites more manageable by control-
l ing them with HP's scaffold automation tool. l The scaffold
provided the framework to manage the large body of tests,
and also provided some input and output archiving. With
the scaffold in place, the test suites were run nightly by
an HP-UX cron script on all unoccupied workstations used
by the Starbase/X11 Merge development team.

HP-HIL and Input Extension Test Suite
With the addition of several input extensions to the X

server, a new input extension test suite had to be developed.
Previous input testing tools proved to be inadequate for
three reasons:
r HP-HIL (HP Human Interface Loop) activi ty was usually

captured after some processing of the HP-HIL activity
had a l ready occur rec .

I Previous test tools required that the code under test be
modif ied to accommodate the test mechanism.

r Previous test tools could only handle keyboard and
mouse activi ty, thereby excluding the new HP input ex-
tensions to the server.
The HP-HIL simulator, which was leveraged from an

exist ing HP Windows/9000 test tool, al lows mult iple HP-
HIL devices to be simulated and tested at once, including
the new input extensions. The HP-HIL simulator operates
in record/playback modes. The record mode requires the
HP-HIL devices, the simulator, and a tester to run the test
and use the HP-HIL devices. When it is recording, the

44 HEwLEfi PACKARD JoURNAL DEoEMBER 1989

simulator captures al l HP-HIL activi ty and puts i t into a
f i le. In playback mode, the simulator uses the f i le captured
during the record mode in place of the real HP-HIL devices.
The tester only needs to start the test program in playback
mode. Al l of the HP-HIL data, regardless of i ts source, is
sent to the server.

The HP-HIL simulator is instal led by creating a pty
(pseudo tty) in the /tmp directory for each input device on
the HP-HIL loop. This sets up a communication path be-
tween the ptys and the real HP-HIL devices. To ensure that
the X server will use the ptys in /tmp, an appropriate entry
is made in the server's Xndevices f i le to change each device's
path from /dev to /tmp. The Xndevices file is used by the server
to determine i ts input device locations.

When a recording test session is started and the server
tr ies to open what i t thinks is an HP-HIL device, i t is con-
nected to a pty and the HP-HIL simulator is triggered to
open the real HP-HIL device. Once this is done, the HP-HIL
simulator, transparent to the test program, passes al l HP-
HIL device activity back and forth while saving all HP-HIL
activity along with timing data into a file. The timing data
ensures that real ist ic playback is provided. Fig. 2a shows
the setup for test recording.

For HP-HIL playback, the file that was saved during re-
cording is simply read by the simulator, and the appropriate
HP-HIL activity is generated in the same time sequence it
was recorded and fed into the pty. During the playback
sessions the real HP-HIL devices do not have to be present

on the HP-HIL loop. This faci l i ty al lows suites recorded
using the HP-HIL simulator to run on any machine without
concern for the presence of HP-HIL devices-which are
sometimes hard to f ind. The setup for playback is shown
in Fig. 2b.

The HP-HIL simulator was used to test the server input
extensions, and was then incorporated into the test scaf-

Actual HP-HIL Devices
Attached to the

Simulator

HP-HIL Stream
Data File

ptys Simulating
the Actual HP-HIL

Devices

(a)

HP-HlL Stream
Data File

Fig.2. (a) lnitial setup for recording data from HP-HIL de-
vices. (b) Setup for playback.

(b)

fold. The simulator was also used by another group to
simulate foreign versions of the HP-HIL keyboard to test
native language support (NLS) functional i ty.

GRM Test Suite
The graphics resource manager (GRMJ is composed of a

daemon process and a cl ient interface l ibrary. The suite of
tests that was developed for the GRM system is partitioned
according to the various functionai components ol the sys-
tem. A test module was developed for each of the fol lowing
functional categories :
r Client/Server Protocol. The serial data stream between

the GRM client and the GRM daemon.
I Object Al location (including semaphores). The mainte-

nance of all display hardware resource allocations.
I Offscreen Memory Management. The allocation and

deallocation of three-dimensional blocks of offscreen
memory.

I Shared Memory Management. The creation, allocation,
and deallocation of chunks of shared memory.

I Sequence Control. The maintenance of request se-
quences for mult iple processes.

r Listing of Objects. The wild-card matching and listing
of all GRM obiects.
With the exception of the protocol test module, al l of

these test modules tested the operation of the GRM daemon
through the standard GRM interface library. For the pro-
tocol test module, some library routines were replaced with
altered copies of the original library routines to achieve
the desired test procedure.

Although the GRM daemon is designed to operate with

mult iple cl ients, the tests were designed to have exclusive
use of the GRM. If another GRM client process was detected
by the test process, the test would identi fy the error and
exit. Since only one GRM daemon will run on a single host
at any particular time, the test environment had to be free

:j.i:l
graphics applications that used Starbase or the X

XDI Test Harness
The X driver interface, or XDI, has about four dozen entry

points in the device dependent port ion of the X server.
The X driver interface provides an interface between a
translation module and the low-level X display drivers that
perform the actual display control and rendering opera-
tions on the display hardware. The translation module is
responsible for translating requests from the device inde-
pendent port ion of the X server into a form suitable for the
X display drivers. This architecture allowed independent
development by HP engineers in two different organiza-
t ions and locations, and provided a platform for code shar-
ing. The X server code was done at HP's Corvallis Informa-
tion System Organization, and the display drivers (for X
and Starbase) were done at HP's Graphic Technology Divi-
sion. The article on page 6 describes the Starbase/X1l
Merge X server and the XDI, and Fig. 2 on page g shows
the X server architecture.

With the significant advantages of this newly defined
interface, there came corresponding new testing demands,
because high-quality, well-tested X display drivers had to
be delivered at regular intervals, and these drivers had to

be developed whether or not any server code was avai lable.
While much of the underlying driver code was shared

by the Starbase driver code, the X driver interface was
tailored to the needs of the X server. The differences be-
tween the Starbase driver interface and XDI were sufficient
to prohibit direct use of the Starbase test suite. Since the

test suite could not be direct ly used, other approaches were

explored that would meet our test ing needs and leverage
as much of the exist ing test suite technology as possible.

To provide a tool for debugging and automated test ing,
the XDI test harness was developed. The harness provides:
r A user interface for each XDI entry point
r A means for importing and manipulating the associated

data structures
r Support for a subset of C programming language com-

mands.
What makes the harness an unusual testing tool is the

way in which i t acts as an interpreter that receives input

commands either interactively or from text script files.

The XDI test harness offers several advantages over more
traditional testing approaches that involve compiling vari-
ous test programs and then linking each of them with the
code under test. The harness needs to be l inked only once
with the code under test, and since the harness is interpret-
er-based, any number of test programs can be run without
the need to link each one. The harness also makes test
programs easier to write and modify because it provides a
convenient interface to the XDI entry points and the ability
to manipulate data structures. Final ly, disk space ls con-
served because only the harness and not the numerous test
programs need to be linked with the large driver Iibraries.

As a result of these advantages, the XDI test harness
proved to be a useful tool for XDI code development and
debugging. In addition, with relatively minor changes to
the Starbase test suite tools, the XDI test harness was inte-
grated directly into the test suite. An extensive set of new
harness test programs was developed to test all the types
of graphics display devices supported by the StarbaseiXtt
Merge system. Once the tools and test programs were in
place, this new XDI test suite was run nightly in the test
cenrer.

Interactive Testing
While i t was desired to automate as many tests as possi-

ble, not all server activities could be automated. Further-
more, a measure of randornness not provided by the auto-
mated tests needed to be added. Areas especial ly suited
for this type of testing included object manipulations with
the X cursor (e.g., moving a windowJ, screen changes when
running in a stacked screens mode, mult iserver environ-
ment, and Starbase echoes (cursors operated by Starbase)
in X. Usually, interactive test ing al lowed a wider range of
scenarios to be tried. When certain scenarios were iden-
tified as productive, an attempt was made to automate
them.

Conclusion
With approximately 500 KNCSS between X and Starbase,

and over B0 different hardware configurations, testing the
Starbase/X11 Merge system proved to be very challenging.
Available rest tools and test suites orovided the bulk of

DEcEN,4BER 1 9s9 HEWLETT,pAcKAFD JoURNAL 45

our automated tests, while the branch flow analyzer cover-
age led to the development of new test tools and many new
tests. During the latter half of the StarbaseD(11 Merge proj-
ect, we realized there was a need for more user-interactive
tests. While automated tests are indispensable, we found
that a great many interesting and important defects can be
uncovered with the randomness provided by user-interac-
tive testing.

Acknowledgments
We would like to thank Jim Andreas and Courtney

Loomis for their efforts on the X Text Consortium and

graphics resource manager test suites. We would also like
to thank Mike Mayeda, fan Kok, and John Waitz for playing
key roles in redesigning and executing the Starbase test
suite technology in the X Window System, and)ennefer
Wood, who designed and built the HP-HIL simulator.

References
1. C.D. Fuget and B.]. Scott, "Tools for Automating Software Test
Package Execution," Hewlett-Packord /ournol, Vol. 37, no. 3,
March 1986. pp. 24-28.

46 HEWLETT.PACKARD JoURNAL oECEMBER 1989

Authors

i . i - :S la r l lase X- i I M+rug l . j ys ie ! | . : - , - , - - :

David J. Sweetser

As prolect manager David
Sweetser brought several
years of exper ience in Star-
base dr iver development
and high-performance 2D
and 3D graphics to the
Starbase/X1 1 N,4erge proj
ect . Born in Wood and,
Cal i fornia, he received a
BSEE deg ree (1971) and

an MSEE degree (1972) f rom Harvey Mudd Col
lege. In 1977, he jo ined HP's Corval l is Div is ion,
working on l/O hardware and software for the
HP-85 Computer. He later transferred to the
Graphics Technology Div is ion, where his respon
sibi l i t ies have included the design of graphics
accelerators and the development of graphics dr iv-
ers, most recently for the Starbase/X1 1 N/erge.
Dave is marr ied, has a son and a daughter, and
l ives in Fort Col l ins, Colorado. He spends his spare
t ime whi te-water raf t ing, mountain b ik ing, cross-
country ski ing, h ik ing, and playing tenn s and vol-
leybal l . He has contr ibuted two previous ar t ic les to
the HP Journal .

Kenneth H. Bronstein
Schoo teach ing and tex t le

produc l ron managernen l

are two o f sever a l vocat ions

Ken Brons te in pursued

pr io r to jo n ing HP's Corva -

i s D i v r s i o n n 1 9 8 1 S i n c e

then, he has worked on HP

ln tegra PC app rca t ons

and OS suppor t cus tom

FOIV1 deve lopment fo r the

I n t e g r a P C , a n d t h e S t a r b a s e d r v e r t o r t h e X l 0 s y s -

tem He was a pro lec t manager on the Starbase, i

X11 N,4erge pro lec t Bor r r rn Ch icago, l l |nors Ken

re ce ived a BA degre e f rom Wash ing ton Unrvers i ty

n S l . I ou s i r 1973 ano an 1" ,4Sdeg 'ee In conpu lpr

sc ie^ce l 'om lhe Jn ve 's r l y o l Oregon a l I Lgene
, n 1 9 8 1 H e r \ r a ' r , o d h a s a s o n a n d a d a u g h l e ' .

and ives in Corva I s . Oregon. An amateur as t rono

n c - e a s o r - d s I r n e [o ' h i k r n q . o r q a n c g d r d e n -

ing , and backgarnmon

R. Yoder
Bi I Yoder has served as a
senior technical wr l ter as a
sof tware engineer on a
DOS/Pascal workstation
and X10, and more re
cent ly , as project leader of
the Starbase/X1 1 N,4erge
server team He s now
release manager 01 the
HP-UX 8.0 X Window Sys-

tem. He rece ved a BA degree n history and I ter-
ature {rom Harvard Universty (1972) and an NIA
degree ln Engl ish f rom the Univers i ty of Cal i fornia
at Santa Barbara (1976) and taught h igh school
and co lege Engl ish for s ix years belore jo in ing HP
in 1980. He went on to earn a BS degree (1985)
and an N/S degree (1 988) in computer sc ience l rom
Oregon State Un vers i ty and Stanford Univers l ty .
respect ively. He has wr i t ten a dozen user and pro-
grammer manuals f or the HP-75 and HP-85/86/87
Personal Computers, UCSD Pascal , and the HP
Integral PC, and he programmed and authored the
tutor la l d isc for the Integral PC. Born rn
Bloomlngton. l l l inois, Bl l l is marr ied, has a son. and
l ives rn Corva l is , Oregon. He ls a member of the
ACM SIGGRAPH and SIGCOM, the lEEEComputer
Society and Computer Professionals for Socia l
Fesponsibi l i ty . He coaches in the American Youth
Soccer Organizat ion and enjoys aerobie jogging
playing gui tar , reading l ic t ion, and part ic ipat ing in
local po i t ics

Env ronmenl . Bob s specla l t ies are operat ng sys-
tems and data commun cat ions systems He has
coauthored ar t ic les on the UNIX operat ing systern
for the HP Journal and for Byte Magazine. He is
s ingle, ves in Corval l s , Oregon, and devotes h s
spare t ime to camping, h k lng, swimming, and gol f

Before jo ln ing HP, J m
Andreas des igned
hardware and so l tware fo r

drgr ta p lo t te rs In 1980, he
jo ined HP s Corva l l i s D iv -

s ron , wnere ne was In -

vo lved n research and de-

. ! f veropment o i the HP 85
I 5 -

P e r q o n a (. o m n , t t o r t n o

12I l l l : r rbasc) { 1 1 t l i s } r i ry Ob ic 'c is - - - l - .

Persona Computer, the HP
\".J 98074 lntegra Computer

and the HP Vectra CS. He has spent the past two
years working on the X W ndow System and was
a member of the B&D group that designed the
graphics resource manager of the Starbase/Xl 1
Merge system. He coauthored a previous ar t lc le ln
the HP Jo!rnal on a UN lX operat ing system. A 1977
g raduate of the lvlassachusetts I nstitute o{ Techno
ogy w th a BS degree in e lectr cal eng neer ng and
compu te r sc i ence , hea l soho dsan MSdeg ree n
computer sc ience f rom Oregon State Univers i ty
(1988). J l rnwas born in Si verton, Oregon and ives
n Corva l ls , Oregon w th h is wl fe and two
daughters. He and h s wi fe are act lve in bal l roorn
danc I q tse also co lecls drd 'arses Japaneso
map es

Born n Honolulu, Hawal i ,
Courtney Loomis came to
HP by way of Oreqon State
Univers ty, where he
o r r n a d h e R a i o n r o o

(19 /9) and l \ lS degree
(1982) ln e lec t r i ca i and

computer eng lneer ng He

; , t r .1 des gned the keyboard
* ' "" contro l ler and memory

modu es lor the HP Portable Plus and deve oped
the keyboard control er f rmware for the HP Vectra
CS portable computer He s current ly apply ng h s
expert ise to user nter face management systems
He was part of the starbase/x1 1 N,4erge team who
des gned and tested the Graph cs Resource Man-
ager Courtney ls s ngle and l ives n Corval l s , Ore
gon ! s outs c lc rnterests are bl rdwatching,
botany. cross-country skr ng, mounlarneerng,
canoerng, and v is i t ng Western deserts.

?0 -_ Siarbase ,1 i I t r r -cFlay Resoirrcesl__l_-

Steven P. Hiebert
Author 's b iography appears elsewhere in th is

sect on

Keith A. Marchington
Author 's brography appears elsewhere in th is

sect ion.

Born in Oceanside, Cal i for-
nra, Bob Cl ne received h s
BS degree f rom the Un ver-
s ty of l\,4assachusetts in
1976 and his MS degree
from lndrana Univers i ty n
1978. He came to HP that
same year and worked on
the HP Inteqral PC. the X10
cl ients, and the X1 1 server

before lo n ng the Starbase/X11 l\,4erge prolect
team. He s current ly work ng on the HP Newwave

Wil l iam

DEoEN,4BER I 989 HEWLETT pAcKARD JoURNAL 47

John J . Lang

$

Michael H. Stroyan
Mlke Stroyan's specla l in-
terests are n compuler
graphics. Af ter receiv ing
his BS degree in computer
science f rom Colorado
State Un ve.s ty in 1982 he
jo ned HP and lvorked on
graph cs lor the HP 9000
Series 200 HP-UX operat-
ing system and Starbase.

Af ter lo ln ing ihe Starbase/X1 I Merge project team,
he concentrated pr mar i y on the input and d splay
dr vers. Mike is a member of the ACN,4 SIGGBAPH
He s s lngle l ives n Fort Co l lns, Colorado and en'

loys ski ng vol leybal l , and sw mming. Hewas born
in Lockport New York.

John Lang fras worked on
Starbase projects s nce he

lorned HP in 1985 He has
contr buted pr mar ly to the
TurboSFX drvers and the
SRX dr ver of the Starbase/
X11 N,4ergesystein. Born n
| ^ m ^ ^ ^ f -) { n r n e h o r o -

r o , , o r l h i c R a r l o n r p p i n

w ld l i fe b io logy n 1 982 and

his l \ ,4S In computer sc ience in 1 985, both f rom Col
orado State Unrvers i ty John is s ngle, enloys skt-
l n ^ : n . t ^ o a . n a c z e o c d F P c O C C e r l e a r i 1 a

crtyw de eague in Fort Col ins, Colorado, where he
lves. He is a member of the ACM.

Jetf R. Boyton
Je f fBoy ton sag raph i cs
engineer responsible for
the X Window backing
store and for the p xmap
(memory) portion of the X
Window System. A 1986
graduate of the Nl ichigan
Technologlcal Univers i ty
with a BS degree in com-
puter sc ience, he jo ined HP

the same year. He now has engineer ng responsi-
b i l i ty for the TurboSBX dr lver and adminlstrates de-
fect track ng for Starbase. Away from work, he is
a {requent part lc ipant in vol leybal l tournaments.
Jeff is married and ives in Fort Collins, Colorado.
He ls a member of the ACM.

Sankar L. Chakrabarti
; i i i- i : | ; Sankar Chakrabarti re

ceived degrees in chemis-
try at Calcutta University
and Kalyani Universities,
and a PhD degree in
chemistry and molecular
biology f rom the Tata Insti-
tule of Fundamental Re-
search in Bombay. He also
pursued basic research in

Jens R. Owen

$

molecular b io logy at Harvard Medical School and
the Universlty of Oregon. A major career change
brought h im to Inte l Corporat ion and later to HP s
Corval l is Drvis ion in 1981. Stnce then, he has
worked on the X10 Window System and the Integral
PC oefore jor .19 lhe lear that developed the
backing store portion of the Starbase/X1 1 lvlerge
system. Born ln West Bengal , lnd a, Sankar l ives
with h is wi le and two chi ldren in Corval l is , Oregon,
where he helps coach hls son s soccer team. He
has an MS degree In computer sc ience f rom Ore-
gon State Univers i ty (1985).

As a member o l the techni-
cal staf f o i HP s Graphrcs
Technology D v is ion, Jens
Owen worked on the de
sign of raster fonts for the
Starbase/X1 1 Merge proi -
ect . Born in Gaester ,
Denmark, he grew up in
Denver and received hls
BS degree f rom Colorado

Stale Univers i ty in 1 986. He io ined HP af ter gradu-
at ion Jens s newly marr ed and l ives in Fort Col l lns,
Co orado. H s hobbies include snowboarding, vol-
leybal l , and mountain brkrng.

John A. Waitz
A graduate of Co orado
state university with a BA
degree (1980) and MSCS
degree (1982), John Waitz
has worked on various Star
oase assrgnments srnce
jo in lng HP in 1983. His con'
tributlon to the Starbase/
X1 1 Nlerge project was in
the development of Star

base and X Window drsp ay dr ivers and df lver
ut l t ies. John was born in Phi ladelphia, Pennsyl-
vania, but grew up in Boulder, Colorado. He is
s ingle and l ives in Fort Col l ins, Colorado. He plays
the piano, s ings in a community jazz choir , and en-
loys tennis, running, and bicycl ing. He is a mernber
of the AClv and the IEEE.

Peter Robinson was a de-
s ign engineerfor the XDI in-
terface and direct
hardware access (DHA)
extensions to the Starbase/
X1 1 Merge server. His ear-
l ier assignments lnc lude
work on the HP Integral PC
and HP Portable Plus proj-
ects. Born in Lancaster,

Cal l fornla, he recelved his BS degree in computer
science f rom the University of California at Los
Angeles in 1975 and his MS degree in e lectr ical en-
gineer ing f rom Stanford Univers i ty in 1978. He
joined HP in 1980 at Corvallis, Oregon, where he
now resides. Peter and his wrfe provide home

school ng to their three daughters, for whlch they
des gn the curr icu um. He also plays the piano and
accompanles his tam ly on bicycle tours.

33 = Starbase X11 Memory Planes

John J. Lang
Author 's b ography appears elsewhere in th is

sect ion

Development of g oba drs-
play conlro s ano server
operat iona modes lor the
X Window System server
are Kei th lVarchington's
pr imary contnbut ions to the
Starbase/X] 1 l\,4erge proj-
ect. He has also been a
product marketrng en-
gineer on the X10 Window

system and a product support engineer for var ious
Corva I s products. Born in Port and, Oregon, he
ives in Corval l is , Oregon, where he jo ined HP in
1 979. He has BS degrees in computer sc ience and
mathemat ica sciences f rom Oregon State Univer-
s i ty (1981). Kei th ls a s ingle parent who enjoys
spo(s, reading, and a var iety of act iv l t ies wi th h is
flve-year-o d son.

A former U.S. A r Force stafl
sergeant, Steve Hiebert
was born ln Port land, Ore-
n a n H a r o n o ' , o d h r c t r Q

degree ln mathemat lcs
from Portland State Univer-
s ty in 1976. He jo lned HP
ln 1 981 and worked on the
compi lers and compl ler
ut i l i t ies for the HP Integral

PC. Before that he worked on Pascal compi ler lm-
p ementat ion and support at Electro Sclent i f ic In-
dustr es and was the department manager Tor sys-
tems programm ng at T meShare Corporatlon. On
the Starbase/X1 1 Merge project, Steve's respon-
sib i i i t ies lnc luded the cursors, locks, render ing
state, comblned mode, and stacked-screens
mode of the X Window System. He is s ingle and
l lves in Corval l ls , Oregon. He is a member of the
IEEE and the ACM.

38 =Starbase X11 Input Devices :

As an R&D engineer on the
Starbase/X] 1 t\4erge proj-
ect, George Sachs was re-
sponsible for the support of
input devices by the X Win-
dow server and tor propos-
ing and implementing stan-
dardized support for addi-
tional input devlces
through the X Consortium.

He also has been a software quality engineer on
various other projects. Before coming to HP in

Keith A. Marchington

*i, i
George M. Sachs

48 rewrErr PAoKARD JoURNAL DEOEMBER 1989

1 981 , he was a sol tware development englneer de
veioping a re lat ional data base management sys
tem at lBlM. He earned his BS degrees in computer
sclence and zoology in 1 978 at Oregon State Uni-
vers i ty . Born n Palo Al to, Cal fornia, George is mar-
r ied, hastwo chi ldren, and l ives in Corval l is , Ore-
gon. He is act ive in h is church and l is ts as his hob-
bies c i ty- league sof tbal , water and snow ski lng,
f shrng, camping, and woodworking.

lan A. Elliott
Af ter receiv ing his BS (1984) and MS (1987) de-
grees f rom the Univers i ty of Utah and serv ing as
assistant dl rector of the Un iversity's Department of
Bloengineer ing Surface Analysis Laboratory, lan
ElLiott joined HP and began working on the Star-
base/X1 1 Merge project . His most recent contr ibu-
tions have been to the X Window System, Starbase
device dr iver , and general archi tecture. He
authored a 1 983 article about surface analysis for
the Jou rnal ot Electron Spectroscopy and Related
Phenomena. lan, who was born in Detroi t , Michi-
gan, l ives in Fort Col l ins, Colorado wi th h is wi fe and
new daughter. He spends most of h is f ree t rme f ix-
ing up their recent ly purchased home.

42 = Starbaseixl 1 Testing

John M. Brown
London, Kentucky was
home to John Brown untll
he completed his BSEE de-
gree in 1980 at the Univer-
s i ty of Kentucky. His spe-
cialty of high-performance
3D graphics render ing s
the result of several years

50
-

CD-ROM Source Access Svstem
-

B. David Cathell
, ruf

58 = Transmission Line Ef fects
-

Rainer Plitschka
As prolect nnanager for the
HP 82000 lC Eva uat ion
System, Fainer Pl l tschka's
respons b l i t ies incLuded
the pin e lectronlcs, dev ce
under-test nterfacing, dc
parametr c measurement
unl t , rnechanics, and
power supply. In ear ler
prolects, he contr ibuted to

the design of the HP B1 1 2A Pu se Generator and
the HP 8l I 64 Pu se/Funct ion Generator . He jo lned
HP n 1979, af ter comp et ing his studies at the Un -

vers i ty of Kar sruhe, where he earned his englneer-
ng d p oma. Rainer presented a paper on the sub-
ject of t ransmissron l lne ef fects ln the test of h igh-
speed devices at the European Test Conference
1989 in Par is. Born in Stut tgart , he is marr led, has
three boys, and ives 1n Herrenberg, Baden-
Wurt temberg. In h is of f -hou rs, he enjoys rebui ld ing
an old home, woodworking, and photography.

74: Custom VLSI

Larry J. Thayer
Larry Thayer worked on the
HP 9000 Series 500 Com-
puter and the SRX graphics
system scan-conversion
chip before assuming re
sponsibi l i ty for the HP
TurboSRX pixel processor.
Present ly, he is designrng
VLSI for a future graphics
hardware product. He

graduated f rom Ohio State Univers i tywi th a BSEE
degree in 1978 and an MS degree in 1 979. He rs
coauthorof a 1984 HPJournal ar l ic leaboutthe HP
9000 Ser ies 500 Computer and a 1 986 SIGGRAPH
paper descr ib ing the SRX scan-conversion chip.
A native of Lancaster, Ohio, Lany lives in Fort Col-
l ins, Colorado wi th h is wi fe and two chl ldren. His
hobbies include basketbal l , sof tbal l , and church
and iami ly act iv i t ies.

78
-

Rad ios i ty

David A. Burgoon
Dave Burgoon wrote micro-
code for the TurboSRX
translorm engine and is
now worK ng on nexl-gen-
eration transform engine
hardware design. He
joined HP in 1981 , af ter he
received hrs BS degree in
electrlcal engineering f rom
the University o{ Toledo. He

earned his MS degree in computer sc ience in 1 989
f rom Colorado State Universlty. His professronal in-
terests nclude fast renderlng methods and
hardware archi tectures for computer graphics. He
authored an articie describing the SRX accelerator
hardware architecture that appeared in the July
1987 issue of Electronic Design. Dave enjoys re-
pair ing automobi les and te levis ions and reading
science f ic t ion. He is marr ied, has a daughter, and
makes his home in Fort Collins. Colorado.

,{F #\

'
t As a project manager on
l , ihe HP Source Reader de

f uetopment, David Cathel l 's
I contr ibut ions focused on

the design and, eventual ly ,
the lmplementat ion of the
system. When he jo ined HP
In 1978, he had completed

l" -effi -: q, iff iilff ':#j'"'i:l

and hardware and soltware graphics architectures
atGeneral Electr ic . Heloined HP n 1988andas-
sumed responsibi l i ty tor qual l ty assurance and
testing for the Starbase/X] 1 lvlerge prolect. John
is marr ied, has two chi idren, and l lves in Ft . Col l lns,
Colorado. He enjoys running, snow-ski ing, and
bicycl ing.

Thomas Gi lg earned his BS
(1986) and NiS (1988) de-
grees In computer sc lence
from l\/ontana State Univer-
srty, where he was a
graduate research assis-
tant workrng on the remote
electi'onic animal data sys-
tem (READS) prolect at
GeoResearch, Inc. He has

worked on the Starbase/Xl 1 Merge project since
jo in ing HP in 1988, part icular ly in test ing for the
merge server, concentrating on mixed-mode tests.
Thomas is an avid f isherman; through his member-
ship in the Northwest Association of Steelheaders
he is active in the preservation of fishing habitats.
He also enjoys back-country t ravel ing, h ik ing, and
cross-country skiing. He was born in Casper,
Wyoming, is s ingle, and l ives in Corval l is , Oregon.

at Contro Data Corporation. Since then, he has
held posi t ions as a senlor programming analyst for
manulactur ng appl icat ions and as a f ie ld systems
engineer for commercral insta l lat ions. He wrote and
presented a paper at the 1984 HP 3000 Users
Group (now Interex) semiannual conference de,
scr ib ing hls research into the ru les of lmage. David
was born in Showel , Maryland, and l ives rn San
Jose, Cal l fornia. His hobbies are woodworking and
reading. He and hls w fe enjoy t ravel ing to Hawai
every year.

Born in Elk ins Park,
Pennsylvania, lv l ike Kal-
ste in graduated in 1976
with a BA degree f rom Tem-
ple Univers i ty . He came to
HP af ter receiv ing his MS
degree in computer scr-
ence f rom the Univers i ty of
l l l inois in 1979. He soon

loined the Santa Clara,
Cal lornia. sates ol l rce to become a systems
engineer responsible for presale support , t ra in lng,
and f ie ld sof tware coordinat ion. ln later assign-
ments as on- i ine support manager and systems
escalat ion engineer at HP's Commercia Systems
Divis ion, he di rected technical support for | \ IPE
systems and administered the engineer ing staf f .
His contr ibutrons lo the FP Source Feader project
included developing part of the access and f i i ter ing
programs and coordinating the production of some
of the CDs. Mike and his wife are expecting their
second chi ld in December. His le isure interests
include playing piano and gui tar , song-wr l t ing, ten-
nis, b icycl ing, walk ing, and home improvements.
He l ives in Campbel l , Cal i fornia.

Stephen J. Pearce
'

-*m- When he Jorned HP in 1973
Steve Pearce had com-
pleted a Iour-year in-
ternship in e ectronic R&D
at the Brltish [,4inistry of
t r la fonco a inno thon h 'c

d ass ignments have in -

S c uded pos i t ions as a

bench eng ineer on mic ro-

wave equ ipment , as a cus-
tomer engrneer on computer systems, and as both
a technica support engineer and a response
center engineer on the HP 3OO0 Computer. On the
Source Reader project, he was the programmer for
the access program. Steve holds the equivalent of
a BSc degree in e lectronic engineer ing f rom the
Worcester Technica Col lege. He was born in
Bromsgrove, Worcestershire, has two chi dren,
and l ives ln San Jose, Cal i fornia. His lavor i te e isure
act iv i t ies are astronomy and l is tening to music.

F{* spent developing soltware
,# for sonar systems at lB[/1,

Michael B. Kalstein

Thomes J. Gilg

DECEMBER 1 989 HEWLETT.PACKARD JOURNAL 49

A Gompiled Source Access System Using
CD-ROM and Personal Computers
HP Source Reader is in use tn virtually every HP support
f acility around the woild, giving local support engineers fast
access to complete source code /isfings for MPE, the
HP 3000 Computer operatrng sysfem.

by B. David Cathell, Michael B. Kalstein, and Stephen J. Pearce

P SOURCE READER IS A SYSTEM for accessing
compiled source code stored on compact disk read-
only nremory (CD-ROM) for purposes of system de-

bugging.
' l -hc

source code is stored in a proprietary format
tha t op t i r r r i z . rs re t r ieva l by the access prograrn ru r rn i r tg o t t
a r r HP Vet . l ra Conrputer .

HP Source Reader faci l i tates quick and eff icient debug-
ging of HP 3000 Computer systems by al lowing the user
to d isp lay source code a t any po in t w i th in a spec i f ied pro-

cedure or segrnent.
' l 'he user can then quickly scrol l the

display or jurup to any other location with precise control.
Relevant infolmation can be "popped" onto the screen in
seconds. ' l 'his includes identi f ier definit ions, reference
materials, and the assembly code corresponding to each
source l ine. ' Ihe program also provides nrany useful aux-
i l iary furrct ions including searching, print ing, logging, and
a comprehensive set of customization options. A context
sensit ive help faci l i ty el iminates the need to consult writ-
ten documentation.

Unlike other source browsing systems, HP Source Reader
was n'r i t ten by and for engineers who debug HP 3000 Corn-
puters. The user interface is designed to be famil iar to
support engineers who may not be knowledgeable about
personal computers. The program prompts users for infor-
mation in the same format as other tools they use. In addi-
t ion, to rnake the program easy to use, HP Source Reader
takes ful l advantage clf the personal computer user inter-
face, including keyboard, mouse, pop-up windows, and
menus.

To our knowledge, HP Source Reader is the first system
in the industry that combines the convenience of one-step
source retrieval with the power of the CD-ROM and per-
sonal computer [PC) technologies.

HP 3000 Debugging-Before
HP 3000 Computers are debugged, for the most part, by

analyzing dumps of the computer's memory. When a sys-
tem fails, the operator durnps the memory to magnetic tape
and then restarts the computer. The tape is forwarded to
HP where it is formatted and analyzed by an engineer. The
engineer must examine source code while reading the
dump, comparing the failed system to what the source code
indicates should happen when the system is running nor-
mally. The engineer is constantly alternating between the
source code and the dump throughout the analysis of the

50 lewren-pncxARD JoURNAL DECEN,4BER i989

prob lem.
Historical ly, memory dumps have been printed on paper.

This worked f ine when the HP 3000 contained less main
nremory, but this practice has gradually become untenable
with the advent of larger and larger systems. Therefore,
interactive tools have been developed that al low a dump
to be analyzed in an on-l ine mode. Over t ime, these interac-
t ive tools have been enhanced to the point where they are
now powerful on-l ine tools that al low engineers to locate
and format specif ic information in a memory dump easi ly.
However, as these tools have matured, no paral lel progress
has occurred al lowing eff icient on-l ine examination of
source code. Engineers have continued to depend on
printed l ist ings stored in a shared l ibrary area.

Fig. 1 shows the complex manual process that must be
fol lowed to locate specif ic source code in a l ist ing from
information presented in the memory dump. I t should be
apparent that this is exceptional ly tedious.

Project History
In 1986, we began to rethink the strategy for the use of

workstat ions within our organization (HP Commercial Sys-

tems Support). It seemed apparent that real productivity
gains could be made by engineers, managers, and support
personnel through the use of readi ly avai lable PCs and

software.
At the same t ime, we recognized that i t was becoming

feasible to marry the PC to the emerging technology of

optical media. This marriage could provide a platform for

an engineer to access the massive amount of information
required for system level support of MPE, the HP 3000

operating system.
It became apparent that much of the time spent in analyz-

ing system failures was not bringing expertise to bear on

the problem. Engineers were spending too much time in

overhead activities-walking to a library, finding listings,
and engaging in the long tedious process of source location.

We felt this strictly mechanical work could and should be

automated.
We refined our ideas sufficiently to produce a PC-based

demo version of a program. This gave us the opportunity
to evaluate the user interface with feedback from engineers
who would be users of the actual program, if and when it

was produced. It also gave us a method to communicate
our vision to software developers who had experience in

the CD-ROM industry but who did not necessarily have
knowledge of our particular activities in supporting the HP
3000.

Unfortunately, when we surveyed what was available in
an attempt to save development effort, all we found were
natural-language-based keyword indexing data base en-
gines. These are not a viable solution because there is a
substantial difference between natural language and com-
puter language. For instance, the word "ball" has a small
number of meanings which are reasonably consistent from
document to document. However, the variable "x" may
have many different meanings depending on where it ap-
pears in the source code.

Eventually, we concluded that there were no existing
solutions that we could leverage to meet our needs-we
would have to develop a prototype. This first prototype
was the proof of the validity of the concept. It had enough
positive aspects to justify the resources to rewrite and then
extend the programs.

The main body of effort is now complete and the gener-
ation of HP Source Reader CD-ROMs is becoming a routine
manufacturing effort. The only remaining tasks involve

small utility programs to automate some partially manual
processes. In addition, we plan to continue to expand the
functionality of the accdss program as good ideas are
suggested and as time permits their implementation.

Proiect Goals
At the beginning of the project our overriding objective

was to improve the efficiency of HP 3000 systern debugging.
To achieve this, we established the following goals:
r Elimination of paper listings to save time, space, and

mundane labor.
r Full use of emerging technology to make engineers'time

as productive as possible.
r Ease of use to minimize learning time and errors.
r Minimal impact on organizations that supply source

code to avoid the need to reformat source code or modify
procedures.

I Cost-effectiveness to make it easy for support orgarriza-
tions to justify the expense required.

CD-ROMs and PCs
CD-ROM is a logical choice for the paperless environ-

:

^J,
GA%.
t--u-t

=);t7
:

Library

Interactive Dump
Analyzer Screen

System Cross
Relerence
(Listing)

Fag. 1. The traditional mehod ot
source code location.

2101
-1756

DEcEMBEF i989 HEwLETT-pACKARD JoURNAL 5l

ment. A CD-ROM, a 4lz inch plastic disk, can hold the
equivalent of a 35-foot stack of paper l ist ings. This is suf-
ficient capacity to contain an entire release of the HP 3000
operating system and i ts support ing software. The disks
are inexpensive enough that each engineer can have a set.
Unlike paper, optical media ale machine readable, al lowing
for a wide variety of automated access techniques. Because
the CD-ROM is read-only, i t cannot be overwrit ten; i t al-
ways has the integri ty i t had when i t was manufactured.

The HP Vectra PC is an excel lent system for implement-
ing a high-technology, ergonomic access program. It has
many features that n-rake it comfortable for users-a mouse,
a ful l-color display, and the abi l i ty to pop up and remove
windows and menus as necessary. Since the Vectra is a
personal computer, each engineer has private use of the
system and i ts performance is not impacted by other users
competing for resources. In addit ion, the Vectra supports
a vast array of commercial ly avai lable software and hard-
ware products. Some of these products provide mechanisms
for switching quickly between the source code and the
dump, capturing parts of both in an integrated document.
The Vectra is widely avai lable within HP and is already
in use in many off ices that would need to use HP Source
Reader.

Fig. 2 shows hon'HP Source Reader is used to accomplish
the task shown in Fig. 1. These two diagrams clearly show
the reduction in manual effort brought about by the access
program.

HP Source Reader
HP Source Reader consists of two main parts. The first

is the data preparation system, which is used to generate
the CD-ROMs from the compiled source code as i t is pro-
duced by the lab. The second is the access program that
runs on the Vectra, which is used to locate and display the
source code stored on the CD-ROM.

CD-ROMs are generated whenever a new version of the
MPE V or MPE XL operating system is about to be released.
Each disk contains al l the modules associated with a given
version. Fig. 3 shows the process flow used to convert the
data from its original form (in the lab) to its final form (on
the CD-ROM). Raw source code is maintained in the lab,
then compiled with the output listing files submitted for
inclusion on the CD-ROM. The compiler listings are pro-
cessed in a series of steps to produce a magnetic tape set.
The tapes are sent to a mastering facility, which manufac-
tures the disks.

Structure of the CD-ROM
The CD-ROM has exactly the same physical structure as

the now familiar audio CD. The only real difference be-
tween the two is the meaning of the information recorded
on the optical media, which represents computer data in
the case of the CD-ROM and digitized music on the audio
CD. Data is recorded as a series of pits positioned in a
continuous spiral (beginning at the center of the disk). The
pits are read as ones and zeros when illuminated by a laser
source. The bits are evenly spaced, requiring the drive to
vary the rate of rotation to maintain a constant linear ve-
Iocity. Additional bits are used to provide a high level of
error correction.

52 HEWLETT-pAcKARD JoURNAL DEcEMBER i989

Addit ional structure is imposed to make i t possible to
use the CD as a random-access device. A standard layout
of the disk directories and files known as the High Sierra
standard was proposed and widely accepted within the
industry. Microsoft Corporation was active in the definit ion
of the standard and quickly produced an intermediate level
driver that makes all High Sierra CD-ROMs look like very
large standard DOS discs (albeit read-only). CD-ROMs re-
corded using this standard have approximately 550,000,000
bytes of avai lable disk space for data and directories. The
wide acceptance of this standard and the avai labi l i ty of
the Microsoft CD-ROM extensions made i t possible for our
project to develop our access program using the normal
DOS f i le functions.

From the very beginning of the project, i t was evident
to us that the organization of the many f i les that would be
on the CD-ROM was of paramount importance. A poor
choice would have resulted in terr ible performance. The
result ing design makes extensive use of DOS subdirectories
to group modules in a pattern logical ly similar to that of
MPE. Fig. 4 shows the directory structure of the CD-ROM.
The root directory contains only a f i le describing the con-
tents of the CD-ROM. The second level subdirectories are
of three types----one for system libraries, one for programs,
and one for the reference documents.

The system library subdirectory contains only a file list-
ing all the entry points and segments for that library. The
modules themselves are located in subdirectories below
the system library directory. Each module subdirectory
contains a set of f i les containing the compressed source
code, identi f iers, cross reference, procedure map, and op-
t ional ly, the object code for that module.

The program subdirectories contain a set of f i les contain-
ing the compressed source code, identi f iers, cross refer-
ence, procedure map, and optional ly, the object code for
that program.

The document subdirectory contains a set of files con-
taining the compressed text, page list, table of contents,

Interactive Dump
Analyzer Screen

Source Reader
Screen

Fig.2. HP Source Reader method of source code location

@
@

t5

and index for each document.
In addition to providing good performance, this structure

has proved to be quite robust----only small extensions were
required to include the changes brought about by MPE XL.
Originally, we had only one system library subdirectory,
and now we have three. In addition, a new directory type
was defined for include files fthese are files that are incor-
porated into the source code of multiple modules to provide

common definitions, etc.). In the case of MPE XL, a set of
files containing the compressed source code, identifiers,
and cross reference for the large include file DWORLD re-

sides in that directory. Thus this shared information is
recorded only once, greatly reducing the amount of disk
space required.

Filters
In the compact disc industry, a filter is a program that

reads some form of data and reformats it for use on a CD-
ROM. The files on the CD-ROM are designed and organized
to facilitate rapid retrieval of the desired information. The
application designer can take advantage of the fact that
optical media can be read but not written. Thus it is desir-
able to do as much processing as possible during the data
preparation phase. This should result in less processing

and, presumably, faster data retrieval by the access and
display programs.

For the HP Source Reader project to succeed, we had to
minimize any additional effort that might be required of
other organizations. In our case, that meant that the input
data for the filter program would have to be the same com-
piler-generated listing files that were already supplied for
each release of MPE. These are exactly the same files that
we previously printed and archived in our library.

:

Fig. 4. CD-ROM directory structure.

The initial prototype filter was for SPL, the primary lan-
guage used in MPE V. The result was'tantalizing in that it
gave us a glimpse of the tool that we had envisioned.

We learned from this prototype when we began the de-
sign of the filter for Pascal/Xl (the primary language used
in MPE XL). The major goal was to automate the processing

of the huge number of listing files. The logical solution
was a data base that would contain enough information
about each operating system module to make the need for

human intervention minimal. Thus the filter could locate
files on the system to be filtered, determine which filter
was to be used, and record the results of the filtering in

the data base. This goal also dictated that filtering be done

on a more powerful computer system than a PC, and an
HP 3000 Series 70 was chosen.

A secondary goal was that the overall environment and
the program structure be suitable for extending the filter
for other programming languages. Proper design of the data

@ry
t
I

A
T5

+
I

@

Fig.3. CD-ROM production process

DEcEMBER 1 989 HEWLETT-pAcxlno rouRuL 53

base would easily allow extending the environment. To
facilitate extending the filter program itself, we chose a
three-pass phi losophy.

The first pass parses each input record and determines
what part of the listing it represents. It then reformats infor-
mation to be retained and writes it to the appropriate inter-
mediate file. The second pass performs certain cleanup
tasks such as removing duplicate information regarding
identi f iers. The f inal pass generates the target f i les for the
CD-ROM.

Although the f irst implementation using this three-pass
philosophy was for Pascal/Xl, we found that more than
95% of the code was retained when we extended the pro-
gram to handle Pascal/3000 (the MPE V version of Pascal).
The second and third passes were only minimally changed.
Perhaps this result is not very surprising in the case of
such closely related Pascal compilers. However, we found
that more than 90% was retained when we implemented
the SPL version of the filter. With these three filters, we
can now process 99% of the modules for both MPE V and
MPE XL.

Most of the processing is done by the f i l ters. However,
there is a need to accommodate certain complex modules
that consist of mult iple compilat ion units that may even
be written in different languages. To keep the process as
simple as possible, we f i l ter each submodule and later em-
ploy a merge utility, which we also developed. This pro-
gram uses the data base to ddtermine which submodules
need to be merged. The source, identifier, cross reference,
and optional object files are retained but the procedure
map files are combined. Each procedure entry in the
merged map file indicates which submodule contains it.

Writing the filters was not a trivial task. We encountered
numerous difficulties. The biggest challenge was posed by
inaccuracies in the compiled output. The filters detected
numerous cases of cross references that didn't exist or were
on pages other than what the compiler reported. The Pascal
compilers support long identifier names but truncate them
in many places.

Additional challenges were provided by programmers.
Some use NOLIST compiler directives to turn off listing
output. Others use the DEFINE construct in SPL to improve
readability and shorten the code. Still others use different
cross-reference programs whose formats are different from
the ones for which the filters were written.

Premastering and Mastering
Premastering is the process of converting files from stan-

dard DOS format to High Sierra format. The files output
by the filters are standard DOS file images, while compact
discs are recorded according to the High Sierra standard.
Premastering changes the structure, not the content, of the
files. The conversion is done on a CD Publisher system
manufactured by Meridian Data Systems. The output of
the CD Publisher is a set of master tapes, which are then
sent to a compact disk mastering facility.

The mastering vendor takes the tapes and creates a CD-
ROM master with the same data structure. This will be
used to press CD-ROMs by a process identical to that used
for audio CDs. The finished CDs are sent back to HP for
packaging and distribution.

54 lEwrerr-pncxARD JoURNAL DEcEN,4BER 1989

Access Program Design Philosophy
As mentioned above, a major goal for this project was to

make the access program easy to use. This was especially
important because most of the engineers who use it are not
knowledgeable about personal computers. Therefore, we
designed the screen layout with the major commands per-
manently displayed on the second line. Above that line is
an area that identifies the current procedure. It is also used
for dialog for commands that require it. The remainder of
the screen is used for displaying source code.

Commands are invoked by pointing at them with the
mouse. For systems without a mouse, the command can
be selected by pressing the slash key (/) followed by the
first letter of the command. When a command is selected,
a menu drops down from the command l ine l ist ing the
subcommands. The user can point to the desired subcom-
mand with the mouse or type the first letter of the subcom-
mand. Prompts for addit ional information can be displayed
on the top line or in dialog boxes if more room is needed.

Many of the commands require information such as the
name of a procedure or a variable. We recognized that,
while the program is in use, this information is probably
already displayed on the screen. Therefore, we permit the
user to move the alpha cursor by point ing at a screen posi-
t ion with the mouse, then selecting the command. When
the user is prompted for the name of a procedure or variable,
the access program automatically displays the identifier
above the cursor as the default value.

Another design decision was the extensive use of win-
dows-temporary boxes that overlay the main screen and
contain information gathered from some other place in the
listing. For example, if the user wants to know more about
a variable used in the currently displayed code, the infor-
mation is displayed in a window overlaying the top of the
code area. Once the user has finished with the window it
is removed and the code area is restored to its previous
condition.

Although HP Source Reader uses many windows, it is
not a Microsoft@ Windows application. At the time the
project began, MS Windows was not an established prod-
uct. There was little known about OS/2 and Presentation
Manager. Therefore, we decided to implement the access
program as a character-based DOS application capable of
running in various environments including DOS, MS Win-
dows, and Quarterdeck DesqView.'"

However, we also decided to structure the program in
such a way that converting to MS Windows or Presentation
Manager would be feasible without a complete rewrite.
Thus, the program has a main loop, which checks for a
user action (keystroke, mouse movement, or mouse button
pressJ. Control then passes to a routine based on the current
internal state. That routine performs some action, possibly
changes the internal state, and returns to the main loop.

Another important attribute of the access program is the
speed of scrolling-we wanted it to be as fast as possible.
Unfortunately, the access speed of the CD-ROM is only a
bit faster than that of a flexible disk drive. Since most of
our disk access is sequential, we implemented a buffering
algorithm using buffers that are one sector long (2048
bytes). A pool of buffers is allocated when the program
initiates. The exact number depends on the amount of

memory available on the system. Buffers are linked in order
from most recently used to least recently used. When a
new one is needed, the least recently used buffer is cleared
and reused. This results in faster access than simply reading
the individual records one at a time. Furthermore, the dis-
play of information already in the buffers is very rapid,
since no I/O is required.

HP Source Reader is written in Turbo Pascal from Bor-
land International with extensive use of routines in Turbo
Power Tools Plus from Blaise Computing. The program
employs numerous overlays which are carefully organized
to preclude the possibility of thrashing.

Access Program Command Overview
The HP Source Reader access program is designed to

provide engineers with the most flexible interface possi-
ble----one that provides commands that allow the required
code to be Iocated with minimum delay. The program was
developed by engineers who would use it in day-to-day
work, so the command structure chosen complements the
data provided by current tools.

The main commands and subcommands of HP Source
Reader are as follows:

GOTO
This is probably the most important command in the access
program. It allows the user to select the exact code to dis-
play. Subcommands allow different types of access to the
source. In MPE, each module is located either in a library
or an application program. In MPE V/E and MPE XL com-
patibility mode, procedures are grouped into segments. In
MPE XL native mode, segmentation is not used. To provide
a consistent user interface, HP Source Reader defines "native
mode segment" to be interchangeable with "module."
GOTO has six subcommands.
SEGMENT. Allows the user to select a segment/module
name to be used for the starting point for displaying source
code. Optionally, the user can also provide an offset from
that starting point. The user can limit the search domain
to specific libraries to reduce search time.
PROCEDURE. Identical to GOTO SEGMENT except that the
user provides a procedure name as the starting point.
ENTRY. Equivalent to GOTO PROCEDURE with an implicit
offset to the main entry point of the procedure. This by-
passes declarations and nested subroutines, procedures,
and functions.
CALL. Equivalent to GOTO ENTRY, plus the current module
and location are saved in a logfile. allowing the user to
return to this point at a later time. This mimics the call
and return mechanism used by a computer.
RETURN. Allows the user to return to a place in the source
code that was saved in the logfile as a result of an earlier
GOTO CALL.
APPLICATION. Allows the user to select an application pro-
gram to be displayed instead of a library module.

IDENTIFY
This command displays information regarding identifiers
defined in the source code. Three subcommands select
different information to display.
VALUE. The identifier map information supplied by the

compiler for the selected identifier is displayed in a win-
dow. This includes type, class, and location or value.
DEFINITION. The source code containing the definition of
an identi f ier is displayed in a scrol lable window.
LOCAL VARS. The identifier map information supplied by
the compiler for all the local identifiers in the current pro-

cedure is displayed in a scrollable window.

SEARCH
This command finds a specific item or pattern in the current
module. Three subcommands determine the search method.
Each can be done in a forward or backward direction.
IDENTIFIERS. Finds the next or previous occurrence of an
identifier as supplied by the compiler cross-reference table.
TEXT. Searches forward or backward for text matching a pat-
tern, which can include wildcard characters for increased
flexibi l i ty.
LEVEL. Searches in the required direction for a specific
block level. The block Ievel is a function of the BEGIN-END
statements in Pascal and SPL. Each BEGIN increments the
level number, and each END decrements it.

DISPLAY
This command switches the display between code and sup-
plementary information while retaining the previously dis-
played information. Seven subcommands select what infor-
mation to display.
CODE. Returns to the source code display.
PMAP. Displays the procedure map for the current module.
This lists procedures with segment offsets, if applicable.
REFERENCE. Displays the current page of the current refer-
ence document. Useful documents such as internal specifi-
cations are included on the CD-ROM.
LIBRARY/MODULE/APPLICATION. Displays a list of procedures,
module/segments, or applications whose narnes match a
pattern.
STACK. Displays the current logfile CALL history.

TOGGLE
This command controls the state of three binary switches.
ABSOLUTE/RELATIVE. Alters the way that code offsets are
displayed. They can be ABSOLUTE (using the segment as a
base) or RELATIVE (using the procedure as a base).
HEX/OCTAL. Alters the radix of code offsets.
SOURCE ONLY/INNERLIST. Displays source code only or
source code interspersed with the corresponding assembly
instructions generated for each source line.

PRINT
This command prints information to a printer or file. There
are subcommands to control what is printed.

REFERENCE
This command selects a specific document or a location
in that document using the table of contents or index.

CONFIGURE
This command is used to customize the program by select-
ing miscellaneous options for the access program to use.
These include display colors, screen size, printer, function
keys, and CD-ROM drive location.

DtCEI\,1BER 1989 HEWLETT pACXARO lOUnruaL 55

Fig .5 . Screens f romatyp ica l HPSourceReader sess ion . (a) Thecoro SEGMENTHARDRES
command ls entered. (b) Resulting screen. (c) lnvoktng the TDENTTFY VALUE command.

(d) Resulting screen.

HELP
Context sensit ive help text is provided to assist with any

difficulty using the program. For exarrrple, if the user is

being prompted for some input, the HELP command dis-
plays text that explains the exact nature of the input re-
quired. This is most useful for a novice user, but even

experienced users may need assistance from t ime to t ime
with infrequently used features.

QUIT
This command gracefully exits from the program. A special
logfile entry is made, saving the current location. This al-

lows the user to issue a GOTO RETURN command the next

time the program is run to resume displaying the source
code that was being displayed when HP Source Reader

was last terminated.

An Example
Fig. 5 shows part of a typical HP Source Reader session.

An engineer is trying to locate the source line that aborted

the system. From the memory dump the engineer has deter-

mined that the code aborted in segment HARDRES at octal

offset 16562. The engineer switches from the dump analysis
tool to HP Source Reader. Fie. 5a shows the screen after

56 HEWLElT-PACKARD JOURNAL DECET\,1BER 1989

the engineer selects the GOTO SEGMENT command and types
the segment name and offset. HP Source Reader locates the
source code at that location, result ing in the screen shown
in Fig. 5b. The cursor is posit ioned on the source l ine
corresponding to the return point from the call to SuoDeru-
DEATH-the engineer has found the call that aborted the

sysrem.
From the code, it is apparent to the engineer that SUDDEN-

DEATH is called if CHECKLDEV determines that the value of
the variable LDEV is invalid. The engineer then needs to
examine LDEV in the dump to determine what value it
contained when the check failed. The engineer uses the
mouse to point to LDEV on the screen, then invokes the
IDENTIFY VALUE command. Fig. 5c shows the screen for
doing this. HP Source Reader locates the identifier map

information for LDEV and displays it in a window as shown
in Fig. 5d. The engineer now knows that LDEV is found at
location Q-%14, and therefore switches back to the dump

analysis tool and examines the value of LoEv found at that
Iocation in the memory dump.

Conclusions
HP Source Reader provides substantial increases in pro-

ductivity based on our personal experience, feedback from

support engineers, and management analysis. The time that
it takes an engineer to locate a specific source location has
been reduced from several minutes to a few seconds.
Further savings are achieved by direct access to supporting
information such as identifier maps, assembly code, refer-
ence materials, and other sources. Significant cost savings
are achieved by the elimination of paper listings. These
savings include computer time, consumable items, labor
for printing and binding, and storage costs.

HP Source Reader represents an important contribution
to HP's commitment to customer satisfaction in support.
Local support engineers now have fast access to complete
source listings. Previously, maintaining such listings in
every HP support office was not cost-effective. Today, more
problems are resolved by field support personnel. Custom-
ers realize this as improved system availability.

HP Source Reader is now in use in virtually every HP
support office around the world. Engineers tell us it is

Microsoft is a U.S. registered trademark of i/ icrosoft Corporation.

Correction

In the left column on page 99 of the October 19Bg issue, the
words "paral lel" and "perpendicular" are transposed in equa-
t ions 3 and 4, Fig. 2, and the associated text. Fig. 2a on page
99 shows reflectivity R(0), not reflection coefficient r(0) as stated.
(R(0) : r 'z1e;.; r ig. 2b shows R2(d), which is the fract ion of l ight
ref lected after two ref lections. Also, Brewster's angle du is approx-
imately 6f instead of 59" as shown.

indispensable, and managers at all levels have gone out of
their way to report that HP Source Reader has dramatically
improved problem resolution time.

HP Source Reader successfully combines new optical
media technology with the ease of use and power of the
PC. Designed with HP's traditional "next bench" develop-
ment philosophy, it seems to be developing into the method
of choice for MPE system support engineers who analyze
memory dumps.

Acknowledgments
We would like to acknowledge Rob Williams, Mark Mun-

tean, Jim Schrempp, and Danny Wong for having the vision
to provide the commitment to the project. Gary Robillard
deserves the credit for his efforts in coordinating and filter-
ing several versions of MPE, without which several CD-
ROMs would not yet have been released.

DEcEMBER 1989 HEWLETT-pAcKARD JoURNAL 57

Transmission Line Effects in Testing
High-Speed Devices with a High-
Performance Test System
The testing of high-speed, high-pin-count lCs that are not
designed to drive transmission lines can be a problem,
since the tester-to-device interconnection almost always
acts like a transmission line. The HP 82000 lC Evaluation
System uses a resislive divider technique to tesl CMOS and
other high-speed dev ices accu rately.

by Rainer Plitschka

ODAY'S STATE-OF-THE-ART DIGITAL ASICs (ap-
plication-specific integrated circuits) are charac-
terized by faster and faster clock rates and signal

transit ion t imes. In test ing these devices, del ivering the
test signals to the device under test (DUT) and precisely
measuring the response of the DUT can be a problem. To

maintain signal f idel i ty, transmission l ine techniques have
to be applied to the tester-to-DUT interconnection.

This paper i l lustrates how this cri t ical signal path is

implemented in the HP 82000 IC Evaluation System to

obtain high-precision t iming and level measurements even
for dif f icult-to-test CMOS devices. The HP 82000 offers a

resistive divider arrangement that provides terminated
transmission lines to the inputs and outputs of the DUT.
'Ihis makes it possible to test low-output-current devices
r r n l n l h p i r m e v i m r r m n n e r a ! i n p f r c n r r e n c i e s . T h e H P 8 2 0 0 0u P r v r r r v r r

tester also offers good threshold accuracy, Iow minimum
detectable signal amplitude, and system software that sup-
ports adjustment of the compare thresholds according to
the selected divide ratio.

Whether an interconnection between the tester pin elec-
tronics and the DUT should be considered a transmission
line depends on the interconnection length and the tran-
sition time of the driving circuitry. If

to6) t./B

where t. is the equivalent transition time (0 to 100%) and

tua is the propagation delay (electrical length) of the inter-
connection, then the interconnection has to be treated as
a transrhission line.t For delays less than 1/B of the tran-

sition time, the interconnection can be considered a
lumped element.

Table I shows propagation velocities of signals in differ-

ent types of transmission lines. Using equation 1 for a typ-
ical ECL output or a modern CMOS output with a 20-to-80%
transit ion t ime of 1 ns, or 1.67 ns for 0 to 100%, and using
Table I for signal velocities, we can compute a maximum
interconnection Iength oI l.zs inch (3.1 cm) for a microstrip

Table I
Signal Velocity in Different Transmission Line Media

Type Velocity

Coax, air 1 ft (30 cm) per ns
Coax, foam-fi l led s in (20 cm) per ns
Microstrip, FR4 6 in (1 5 cm) per ns

l ine. There are no high-pin-count testers that even come
close to such a short interconnection length between the
pin electronics and the DUT. Therefore, a transmission line
model must be used.

Transmission Line lmpedance
Besides signal velocity, the line impedance 21 is a charac-

terist ic parameter of a transmission l ine. The value of 21
depends on the line type, geometric factors, and the elec-
trical parameters of the materials used. Table II shows typ-
ical values and tolerances. Note that Z1 typically lies within
a small range of values, and that quite high tolerances are
usual.

(1)

Transmission Line

LineType

Coax, foam-fi l led
Microstrip, FR4

Table ll
lmpedance Characteristics

RangeofZl Tolerance

50 to 100 O
30 to 120 f,)

2Io'l.Oo/o

5Io20o/o

The choice of a value for 21 in a high-speed tester envi-
ronment is influenced by three major factors. First, the
outputs of ECL devices normally are designed to operate
aIZ, : 50f). However, 250 and 100f,1 outputs exist.

Second, connecting a capacitance C to the end of a trans-
mission line forms a low-pass filter. This occurs in a tester
when a DUT with input capacitance Ci. is connected to a
driver. It also occurs at a comparator input, which has a
lumped capacitance Cl,-p.d (see Fig. 1). The low-pass fil-
ter's step response transition time t" (10% to 90%) is:

58 newren-pncxARD JoURNAL DEcEt\,tBER 1999

I " - 2 .2 r - - 2 .2 (Z$) . (2)

A signal with transition time t, at the input to the filter
will be slowed down to a transition time of 1.." at the output:

t.o, - Vt"zT-l

which adds additional delay at every point of the original
transit ion. For the 50% point this delay is approximated
by the factors shown in Table III.

Table l l l
Delay for the 50% Point of a Transition Caused by

Low-Pass Filtering

Vr(t : toa) : Vo. No further reflections occur. The current
that must be provided by the source is Io : Vo/21, and it
f lows as long as V1(t) : Vo. This model is appl icable for
ECL outputs. The resistor R, is connected to - 2V.

The series termination method uses a resistor R" : 21 in
series between the source and the transmission line, as
shown in Fig. 3. At time t : 0, a voltage step Vo is generated
by the source. The forward wave will see the line as a
resistor R : Zr. Because of voltage splitting between R"
and 21, Vr(t - O) : V ol2. At t : toa the wave has reached
the end of the transmission line, and because of reflection
at the open end, V3(t : toa) - zVz(t : 0) : Vo. After
t : 2tna, the ref lected wave wil l reach the source side,
giving Vr(t : 2toa) : Vo. No further reflections occur,
since the source side is terminated. The current Io to be
provided by the source is Io : Yol2Z1 lor the t ime 2tua.
This termination model is appropriate for a driver circuit
in the tester.

Unterminated Environment
When connecting a source with Ro,, * Zl to a transmis-

sion line there is no matching element in the circuitry.
This situation arises when a DUT output, such as CMOS
or TTL, is connected to a tester channel in which the driver
has been set to high impedance and a high-impedance com-
parator is used. Fig. 4 shows the resulting waveforms for
Ro,t) 21 and Ro.t (21. As can be seen, the transmission
Iine mismatch creates a series of pulses that reflect back
and forth (ringing). The amplitude and number of steps
depend on the magnitude of the mismatch, and the duration

Vr(t)

vo

Vr(t)

vo

l' (t)

lo

Fig.2. Parallel termination model

(3)

t " ((t '
Delay at 50% o.7ZtC

t")) tr
' t.oztc

As a consequence, the impedance 21 should be as low
as possible, because C (that is, C,, or Cr,-p.a) is always
nonzero.

The third factor influencing the value of 21 is the required
source current capabil i ty. To minimize i t , 21 should be as
low as possible. To generate a voltage step V" to propagate
along the transmission l ine, the source has to provide cur-
rent I" according to Ohm's law:

I " : Y" lZy . (4)

This is true for both the tester's driver circuit and the
DUT. Proper design of the driver circuit will ensure suffi-
cient drive current. However, some DUT outputs, espe-
cially CMOS, cannot provide the current required over the
entire range of 21 values shown in Table II.

As a result of these considerations, a tester in which both
accuracy and speed are important will use an impedance
Zr of 50f,).

Termination Models
To maintain pulse performance, a terminated signal dis-

tribution system has to be used. Two methods of performing
the termination are possible: parallel and series.

Parallel termination uses a resistor R, : 21 at the end of
the transmission l ine, as shown in Fig. 2. At t ime t : 0, a
voltage step Vo is generated by the the source. The forward
wave will see the line as a resistor R : Zr, and therefore
Vr(t : 0) : Vo. At t : to6 the wave has reached the end
of the transmission line, and because Rt : Zr,
A version ol this paper was originally presented al the IEEE European Test Conference,
Paris, 1989

DUT Comparator

Fig. 1. DUT interconnection model showing low-pass filters
caused by capacitive loadrngs.

t " : t t

o.sztc

R = 2 , z v l e a

M r i I i
vq
l

VV
"?'ii >l i -

r i . T .vv#"-'""

2 1 , l p o

Driver

DEcEN,4BER 1 989 HEWLETT-pAcKARD JoUBNAL 59

depends on the propagation delay of the line and the
number of steps.

Under these conditions, accurate timing and level mea-
surements are not easy.' For repeatability of measurement
results, the ringing should be completely settled before a
measurement is made. Therefore, the device has to be tested
at data rates far lower than maximum. Fig. 5 shows the
relationship between the maximum possible test frequency
and the electrical length of the interconnection for various
degrees of mismatch (i .e., dif ferent device impedances),
assuming two different settling criteria. One of the two
curves assumes that the waveform is allowed to settle
within 'Loo/o oI its final value before an opposite transition
can be started. The other assumes 1%.

Tester Parasitics
The basic elements of a tester's pin electronics are a

transmission l ine, a driver, and a comparator. There is nor-
mally also an acldc switch for performing dc measure-
ments. This switch, implemented using a relay, can cause
problems. However, by proper selection of the relay type
and careful design, the transmission l ine impedance can
be maintained without signif icant parasit ics.

For stimulating the DUT, the driver output signal is fed
to the pin. Because of the input capacitance of the f ixturing
and the pin capacitance (C1,,), the driver transit ions wil l

v"(t)

vo

Vz(t)

vo

Vr(t)

vo

lr (t)

lo

be slowed. This causes a delay as discussed above. Equa-
t ions 2 and 3 and Table II I can be used to calculate the
delay. AIso, because of input leakage currents f lowing
through the driver 's source impedance (R : Zr : 50fl) , the
driver levels wil l change. For example, for an ECL device
with I ,6 : 500 pA typical ly, there wil l be a voltage drop
oI l i6Z l : 25 mV.* Fur ther p rob lems w i l l no t occur .

For receiving DUT data, the comparator can be used in
two dif ferent modes (Fig. 6): high-impedance (high-Z) and
terminated (paral lel).

In the high-Z mode, the driver is switched to high imped-
ance, result ing in a capacitance C1r,, , ,r . .1 formed by the par-
asit ics of the ampli f ier 's switched-off transistors. Assuming
a value of e pF for the compare chip (C") and 20 pF for the
driver (C4), C1,,.1,. .1 : C. + Ca : 23 pF and the result ing
step response t ime for the comparator input voltage is 2 ns.

In the terminated mode, the tester 's driver is used for
termination, el iminating the capacitance C6. Only the com-
parator 's input capacitance wil l l imit the bandwidth, giving
a step response t ime oI 2.z(C"Zi lz : 165 ps. This value is
equivalent to an analog input bandwidth of 2 GHz.

Fig. 7 shows the step response as a shmoo plot. The
stimulus was a pulse with a transit ion t ime of t" : 200 ps
from an HP 8131A Pulse Generator. The measured value
of the 10-to-90% transit ion is t- : 275 ps. The result ing
intrinsic transition time t, of the comparator is therefore:

t, : \m:J : 16s ps.

' ln th s paper, the subscr pts o and i indrcate outpul and nput parameters, respecl vely,
and the subscrlpts h and indlcate h gh and low logic levels, respeclive y. Subscr pts s,
d, and g ind cate the source, dra n, and gate, respect vely, of a f e d-efiect lransistor

Ro,,) Z,

u"^1------------
l r -
lrr
#

0 1 2 3 4 5 6 7 8 t / r o d 2 3 4 5 6 7 8 t / t e d

v l

t/tpd

Ro,, (Zr

Fig. 3. Serles termination model.

60 newrErr,pecxARD JoURNAL DEcEMBEF 1989

0 1 2 3 4 5 6 7 8 V t d 0 1 2 3 4 5 6 7 8 t / t o d

Fig. 4. Unterminated model

Interfacing CMOS Devices
CMOS devices are usually unable to drive transmission

Iines. The output impedance of CMOS devices does not
match typical transmission l ine impedances, and stat ic
power dissipation, which occurs when driving a termi-
nated transmission l ine, may damage a CMOS device.

Fig. B shows the operating characterist ics of a CMOS
output buffer cel l .3 The specif ied dc parameters Vo6,. i . at
I.6 and Vo1,.u, €It Io1 are marked.

The output resistance is not l inear. For high V3", the cel l
acts as a current source. For low Va., it is a voltage source
with a low resistance. The large-signal output resistance
Ro,,, can be defined for either high or low output by:

R,r,,11 : V.1"/I4
(s)

R o u r h : (V a a - V a .) / I , t

where V6" and I,1 are corresponding values on the curves.
The worst-case output resistance, R,rru*t or R-"*1,, is de-

f ined when Vd. : Vol,r ' i ' or V.l-u* and Id : Io6 or lo;. Note
that there are major differences between typical and worst-
case resistances. The resistance also varies with the operat-
ing temperature.

A CMOS output connected to a capacitance C wil l per-
form as shown in Fig. 9. Assume that the source FET is
turned on at t : 0 with Va" : Vaa, The capacitor is charged
with constant current, result ing in a l inear ramping voltage.
As the capacitor voltage increases, V,1" and the outpui resis-
tance decrease. This decreases current f low into the
capacitor, which slows the voltage ramp. The result ing
capacitor voltage waveform resembles an exponential
curve.

The performance of a CMOS output driving a resist ive
Ioad R1ou,1 connected to a voltage source V;ou.1 is shown in

5 ' t0 14 25 354555 75100 250 5oO

Oevice lmpedance (())

Fig.5. Maximum test frequency rn an unterminated environ-
ment. Any DUT switching llme is assumed to be zero and
anv transition tirne ls assumed to be zero.

Fig. 10. The output voltage can be obtained by drawing a
I ine defined by Va. : V1oo4 and I.1 : V1o,4/R1,,. ,1. The inter-
sections with the FET characterist ics define the output volt-
age and current for source and sink operation. The transi-
t ion t imes depend only on the internal switching. Loading
to the dc specif icat ions can be obtained by using values
for R1.o6 and V1.,. . t calculated as fol lows:

Rloud : (V.h, , , i , , - V"1", ,*) / (l loh + l l " l)

\ /
v l o a d

V.t-, , i , ,1I. t] + V.l . ,ur l Inhl

11",,] +l I"1l

A worst-case device loaded to I , ,6 or Io1 wil l have an output
voltage of V.h,,, i . or V.t-.*, respectively. A typical device
will have an output voltage greater than V,6,,1,, or less than
Vol,.o", respectively.

CMOS Driving a Transmission Line
Connection of a CMOS output direct ly to an open-ended

transmission l ine is shown in Fig. 11. Assume that R n,,t) Zl
and a posit ive transit ion occurs at t : 0. At t : toa the
device output wi l l correspond to the intersection of the
FET's characterist ic and the load l ine defined by Va" : V66
and Id : V,r,r lzt. Calculat ing the device's output resistance
using equation 5, the output waveform behavior can be
predicted as discussed above for the unterminated environ-
ment. Because of the nonlinear output resistance, sl ightly
different waveforms may occur depending on the actual
V4" and I,1. When Ro,. is less than 2y the second step on
the source side may be higher than V,1,1. I f clamping diodes
are included between the output and V.1,1, this reflection
can be reduced and further ref lect ions wil l be inverted.

For CMOS outputs with Ro,, < 21, termination can be
achieved by adding a resistor R" between the output and
the transmission l ine. The value should be:

R " : Z t - R , , , r .

This is the series termination model, which gives correct
pulse performance. This method has been suggested in the

(61

t

V
? *

t'.r)

t o o = l
a "sl
zoof

I
F 125_l_

= 100+
I eo-f
f; ez.sf
+ 50t
,i 4ot
6 3 1 . 7 f
o ^ - lr- ac -l-
E 2o-+-
.E 1st
6 tz.s-1-= 'ot

I

I

Driver

4

-{&sN
XJil

cd

Comparator

-
-
- -

Driver

..i+r'#'**i#S

High-Z
C r u - p " a = C " + C d

Fig. C. Operating modes of the receiver path

R = Z , S
F

R = Z t "

* Comparator

.'.,*r,

"ftF*,,
{: F1]
6,"_ c"

Active
Termination
Ctr-p"a = C.

zlzl

s

DEcFN/BFR 1989 HFWI F n-pACKARD JouRNAl 61

past.4 However, i ts practical appl icabi l i ty is l imited, be-
cause the output resistance for posit ive and negative tran-

sit ions is general ly nol equal, and the output resistance

changes from sample to sample and is rtot stable with tem-
perature.

The Resist ive Divider Solut ion
The res is t i ve d iv ider p rov ic les a so lu t io l r to the prob lem

of en-rbedding a CMOS device i tr a transtnissiotr l i l re envi-

ronment . Th is techn ique is i rnp lemented in the HP 82000
If l Evaluation System.

The opera t ing pr in r : i1 r le o f thc res is t i ve d iv ider i s to app ly

a de f inab le dc load to the D l lT . S igna l f ide l i t y i s rna in ta ined

because the s igna l i s fec l in to a para l le l - te r rn ina ted sys tern ;
therefore, no ref lect ions occur.

Fig,. 12 shows a sr;henatic ci iagram of the resist ive di-
v ider . The res is to r R, i s bu i l t in to the tes te r . The res is to r
R" i s se lec ted by the user to g ive an appropr ia te d iv ide

ratio for the part icular DLIT. R" is instal led on the DUT

board, which interfaces the DLIT to the tester and is dif fer-
en t fo r each DUT. The user then te l l s the HP 82000 so f tware
what thc d iv ide ra t io i s . The te rmina t ion vo l tage V, in F ig .
12 is a lso se lec ted by the user .

Bes idcs prov id ing a te rmina ted t ransmiss ion l i l re env i -
ronment, the resist ive divider puts only a very small capaci-
t i ve loac l on the DLJT fshown as C1,u . in F ig . 12J . A va lue
as low as 2 pF can be obtained i f R. is close to the IIUT
pin. This is possible using ceramic blade probes with
pr in ted res is to rs . For h igh-p in -count dev ices (up to 512
pins), the tester 's DIJT board can be laid out with easi ly
instal lable resistors, keeping parasit ics below 10 pF.

The length of transmission l ine between the DUT and

the comparator does not affect the capacit ive and resist ive

loading on the DUT. The termination is done by the tester 's

driver, which is part of the I/O channel. Therefore, the

lumped capacitance that occurs i f the driver is switched
to high impedance is el iminated. This ensures a wide

bandwidth for the compare path as discussed earl ier.

The DUT output levels detected wil l be reduced by the

divide rat io. The result ing comparator input voltages can

be calculated bv:

-TYP|cal
Tr = 25'C

t-ra

r-T a = aS"C

125'C

0.5 1.0 1.5 2.O 2.5 3.0 3.5 4.0 4.5

Output voltage vds (volts)

2'loo

1 400

0

-700

-1400

-2100

-2800

46 46.5 47 47.5 48 48.5 49 49-5 50
Time (ns)

Fig.7. Shmoo plot of the slep response at the tester input
for an tnput signal with t, = 200 PS.

\ / -
V " R r + V r R '

t . lv c n r P
R " + R ,

\ ' /

where V,, is the actual high or low output voltage under
the defined load. This equation can also be used for cal-
culat ing the appropriate threshold sett ing. For ease of use,
this calculat ion is embedded in the HP 82000 tester soft-
ware, so that a user always thinks in terms of noncom-
pressed signals.

Resistive Divider Parameters
The selectable parameters of the divider are R. and V,.

There are several choices for defining the DUT load. Device
Ioading according io dc specif icat ions is normally the best
choice. The DUT's maximum power consumption wil l
never be exceeded and throughput is improved. I f the ac
test is performed with the specif ied dc loading, the need
for further dc fanout measurements is eliminated.

Dc loading specif icat ions can be converted to resist ive
divider parameters using:

4.5 4.0 3.5 3.0 2,5 2.0 1.5 1.0

Output Voltage vd. (volts)

o
G

c

()

-25

Fig. L Output characteristics (16 vs V 6") of a CMOS output buff er, where lo is the drain current
and Vo" is the drainlo-source voltage across the FET.

62 lewrErr,pncxARD JoURNAL DEcEMBER 1989

Vn. = 4.5Va.

-rlS erpected Minimum curves

I -zo

=
I - rs
(J
o

3 - 'o
o

-o -5

1 2 0

=
E tu
o
!

. s 10a

o

--. -=Sgxpected Minimum curves

I-l- v"h-," at l"h

0.5

ld- . t

Source

- Rt : (Voi, - V"r)i(llohl + | I"rl) Rr
(B)

_ v"hll"rl + v"rll"hl

lI"hl + lI"rl

Output Characteristics

Fig. 9. CMOS
capacitive load

outptrt driving a

consumption be checked using:

Par : Vor' Iot '
(1 1 1

P a r , : (V a a - V o n ') I o n ' .

Practical tests have shown no problems as long as the
level change caused is less than 500 mV.

To measure the reduced output signals resulting from
the resistive divider, the comparator must be designed to
detect small amplitudes. Two parameters affect this ability:
comparator hysteresis and open-loop gain. The hysteresis
is a positive feedback effect to ensure the comparator's
stabi l i ty. The open-loop gain is the comparator 's ampli fy-
ing factor for small signals, and is frequency dependent.
Both parameters affect the finite voltage swing (overdrive)
around the threshold that has to be applied to the com-
parator input to obtain output switching (see Fig. 15).

A high-performance comparator design will ensure that
the necessary overdrive wil l be constant up to the
maximum data rate. Smaller pulses can be detected as long
as sufficient overdrive is applied. For detection of a single
transit ion, the value for the f lat section of Fig. 15 applies,
and the limiting element is the input signal bandwidth.

With a value of + 20 mV for the overdrive, and assuming
a dc accuracy of t10 mV, the signal 's ampli tude at the
comparator input should be greater than 60 mV. A TTL-
compatible output will generate a swing of at least 2V.
Within a 50O environment, this allows a maximum divide
ratio r-r* and a maximum value for R" of:

voltage Across C

Voo

Output V(t)

Voo

R" : Rtoua

Vt - Vtoua

Special ac loads are defined for timing measurements as
shown in Fig. 13. These ac Ioads can be converted to resis-
tive divider parameters by the Thevenin equations:

R " : 1 / (1 R r + 1 , 8 2) - R t

(e)
V , : V 6 6 R r i (R 1 + R r) .

There are situations where the values of R" and V, calcu-
lated using equation B cannot be used. Changing the loading
will change the output levels. The changed values can be
obtained from the output characteristic curves. The actual
values are defined by the intersection of the load line with
the FET curve. The worst-case values can be obtained from
the intersection of the load line and the worst-case output
resistance l ine, as shown in Fig. 14. These modif ied levels
can be calculated using:

Vo1' : (VrR-u,l * VoolRloua)/(R-*r * Rroua)

Io1' : (V, - Vopl)/(R-a*r * Rroua)

Vor,' : [V,R**n + VophRload)/(R-*h + Rlo"d)

Io6' : (V, - Voph)/(R-u*h * Rroua)

(10)

where Vool and Voo6 are the low and high level open-circuit
output voltages, and the values for worst-case output resis-
tance are given by equation 5.

Modified loading may result in higher power dissipation
for one of the output levels. It is recommended that power

Vaa

5V-V2

Vtoaa

v1

0

r-u* : 33

R"'u* : 1600() '
(12)

This means that devices having output currents

Voa = *5V

?q
t-r

I f ","""
t l
I Tu"*

VV v1
Fig. 10. CMOS output driving a
resistive load.

DEcEtvlBER 1 989 HEWLETT-pAc<lRo .touRNnr 63

t = 0

v(r)

v2

Voo = *5V

s

t/tpo
o 1 2 3 4

Fig. 11. CMOS output dr iv ing an

l l , , , , l + l l . , , l > 2Vl1 600o - 1.2 mA at TTL output levels can

be tested.

DUT Power Dissipation
At higher test frequencies, the resist ive divider results

in less DUT power consumption than a capacit ive load, as

shown in F ig . 16 .

l /O Pin Considerations
The resist ive divider is appl icable to I /O pins, with some

addit ional considerations.
The tester 's driver can generate a two-level signal. These

levels should be set according to the DUT's input require-

ments, that is, V1 s V11,-,o*, V6) V,h-,. . When receiving

signals from the DUT, one of these levels has to be used

for termination. This may mean that the calculated V, does

not match the driving requirements. V, and R" should be

set to :

Vt) Vih," i " i f lo l > I , ,h

R " : (V . n * i . - V t) / I , , h (13)

or V, s Vi l*o* i f Io1 < Io6

R * - (V , - V . t r r u *) A o l .

The value of R" is modified to ensure that none of the

output states wil l be loaded more than specif ied. This wil l

occur i f only V, is modif ied. Note that one level remains
less loaded. I f DUT power dissipation is not cr i t ical, the
value of R" need not be modif ied.

The device can be st imulated via the series resistor.

CMOS normally has negligible input current, so no level

errors occur. The input capacitance and R" form a low-pass
filter, which limits the data rate and causes a delay at the

open-ended transmtsston line.

Voa

L' Rs
r, larv {-)

IY
f | #"*' l

l"v
V

VV

Zr = 50()

. .- l

I
v1

r T

t
v2

0 1 2 3 4

Comparator

Fig. 12. Reslstive divrder model.

50% point on the transit ion:

I
Data rate - 2.3(Zt + R")(Ci" + Cpo.)

r14 l
Delay at 50% : "t .O(Zt + R")(Ci" + Cpu").

Table IV shows values for the maximum data rate obtain-
able and the corresponding delay for the 50% point. Also
shown is the obtainable accuracy assuming a variat ion of
1 pF for the capacitance.

Table lV
Low-Pass Filter Effects on Drive Signal

(Driver transition time : 2 ns. Cr, * Cpo. : 10 pF.)

R"(O)

100
200
500

1000

r Delay at 50% Delta Delay at 1 pF

1 . 5 n s 1 . 3 n s 1 3 5 p s

2 . 5 n s 2 , 2 n s 2 2 5 p s
5.5 ns 5 .5 ns 550 ps

10.5 ns 11 . .5 ns 1150 ps

R r = Z t

Fig. 13. Transformation of a de'
sired load to reslstive divider pa'

rameters.

I
Rro"a

-+-1 n

t..
V

Vaa

| } r

t 2

I tn ,

t *

I l"'

- +

T
u"'o

VvV

64 rEwren-pncrARD JoURNAL DEcEMBER r989

Tu,
V

CMOS Device Measurement Results

HCMOS Example
Fig. 1 shows the signal obtained at the HP 82000 tester com-

parator input from dn HCMOS output. Switching characterist ics
(at V66 = 4.5V, Tu - 25'C, load capacitance Cr : 50 pF) are:

transit ion t ime < 8 ns, propagation delay < 38 ns
For comparison, Fig. 2 shows the signal obtained with the

6ame output connected to an open-ended transmission l ine Sig-
nif icant inl luences are introduced by the transmission l lne envi-

ronment.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
time (ns)

Fig. 1. Shmoo plot of comparator input signal from an
HCMOS output buffer with 4-mA sourcelsink capability,
loaded by a resistive divider with parameters R" : 269 o1lrt,
Vt = 2.2V

-0.5

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
Time (ns)

Flg. 2. Shmoo plot of comparctor input signal from an
HCMOS output bufter with 4-mA source/sink capability,
toaded by an open-ended transmtssion line (tra = 3 ns) with
the comparator in high-Z mode (lumped capacitance = 23
pF).

CMOS 14000 Family Example
Fig. 3 shows the signal obtained at the comparator input from

a CMOS 14000 family output. Switching characterist ics (at
Vaa : 5V, T" = 25'C, C : 50 pF) are: transit ion t ime < 33
ns + 1.35 ns/pF, propagation delay <80 ns + 0.9 ns/pF. To
show the comparator 's sensit ivi ty, the waveform is not back-cal-
culated according to equation 7 of the accompanying art icle
(that is, V".o is shown, not Vo). Such a calculat ion would result
in values of 3.97V for the high level and 1 .14V for the low level.

For comparison, Fig. 4 shows the signal obtained with the
same output connected to an open-ended transmission l ine. Be-
cause of the slow transit lons, the transmission l ine acts as capaci-
t ive loading.

120 150 180

Time (ns)

Fig. 3. CMOS MC14000 family output signal (Von : 2.5V aI
lon : 2.1 mA, Vo, : 0 4V at lot -- 0.44 mA) with resistive di-
vider parameters R" : 10000', Vt: 2.5V.

0 30 60 90 120 1s0 180 210 240 270 300

Time (ns)

Fig. 4. CMOS MC14000 family output signal (Voh : 2.5V at
lon : 2.1 mA, Vo, : 0.4V at l"t -- 0.44m4) with open-ended
transrnlssion line (tp6 = 3 ns), comparctor in high-Z mode
(lumped capacitance = 23 PF, resulting in a load of 50 pF
total).

2600

; 257s

6 zsso
(t)
G
-o

2525

i zsoo
E
'o 2475
6

t 2450
F

E zazs

2400

5.0

t c.s
tt l.os
E 3.s

5 3.0
o
E 2.5

E 2.O

E t. t
E

E 1 .0
0.5

4.O

; 3.s
ttt

E e.o
o
7 z.s:
g 2.o
E r .s
G
F 1 .0
IL

E o-u
o

0,0

(,(''
G=
o

o.

;
o
o
o
CL
E
o
o

DEcEMBER 1 989 HEWLETT-pAcxaRo .rouRNnr 65

Tr = 85'C

Ta = 25'C

Vor;ax at lor'

Vr = 2 .8V+2.0V

Typical:
Tr = 25'C

Vn" = 6.0Va"

2 3 4

Output Voltage Vds (volts)

Fig. 14.

Fig. 15. Comparator overdilve as a functton of data rate.

DC Accuracy with Resistive Divider
For ease of use, the tester's software takes care of the

appropriate calculat ions of the user's comparator thresh-
olds. This is done using equation 7.

0.1 1 10 100 1000

f (MHz)

Fig. 16. Device under test power dissipation as a function
of frequency for capacitive loading at 50 pF and for a resistive
divider with 10-mW dc loading + 10-pF capacitance.

66 HEWLETT-pAcKABD JoURNAL DEcEMBER 1 999

Typical:
Tr = 25'C

Vn* = -6.0Vc"
Expected
Minimum
Curves:

Ta = 125'G

Tr = 85"C

Tr = 25'C

Von-,. at lo6'

_Vt = 2.8V+2.0V

4.0 3.0 2.O

Output Voltage Vo. (Volts)

Loading resulttng from modifying V,

Thinking in terms of the noncompressed thresholds wil l
affect the dc accuracy. There are four sources of error in
sett ing the desired comparison threshold:
r Termination source error: dV, (mV)
I Comparator threshold error: dV,6 (mV)
r Tolerance on R": dR" (%)
I Tolerance on R,: dR, (%).

The total accuracy for the desired threshold (dVo) can
be calculated as:

dVu: rdV,6 + (r - 1)dvt + (1 - 1/r)(V,6 - vJ(dRt - dR") (15)

where r is the divide factor: r : (R"+Rr)/Rt.

Using 1% resistors and assuming 10-mV basic accuracy
for the threshold and termination voltages, an accuracy
dvp < 2r(10 mV) can be obtained.

DC Measurement Capability
When the loading on the DUT pin matches the dc specifi-

cations, further fanout measurements are not necessary,
but can be made anyway. The presence of R" will cause a
voltage drop when a load current 11 is forced at the output
(Fig. 17). I t is necessary to consider the drop when program-

-25

E -20

;
I - r s
o
o
o
5 - r o
o
o

CI
f - c

o

a 2 0

=
6 t s

o
!

. s 10
o

5.0

; 2 0
E

o.:
t
o

o z o

80

t
9 o o
o-

Fig. 17. Dc measurement path using the resistive divider

I H EWLETT- PACKAFID JGIUFINAL
I

I
Volume 40 January 1989 through December 1989

lrl a\ CNr/ ffiIiil ltilI!fiil:n'd:,Tfl]"."Js:1'B:1:ll! i,1J1il"ff:[il"?l*," ru",r,","n0.
| | \-/ \-/n iffiH::ffii"i:;::ffi.'ll'sil:T",ff:i'd: lH::#"

on'laro L4v lMBcanada

ming the compliance voltage of the tester's parametric mea-

surement units (PMU). Since R" and the forced current are

known, the actual output level can easily be calculated

with sufficient accuracy. It is:

Vort : V-.".r"n - Vd.op : V-.u"t.. - R"Ir' (16)

For best results, 0.1% resistors are recommended for R".

Summary
In the HP 82000 IC Evaluation System, the resistive di-

vider method offers advantages in operating speed and

February 1989
Characterization of Time Varying Frequency Behavior Using Con-

tinuous Measurement Technology, Mork Wechsler
Analyzing Microwave and Millimeter-Wave Signals
Firmware System Design for a Frequency and Time Interval Ana-

lyzer, Terrance K. Nimori ond Liso B. Stombough
Table-Driven Help Screen Structure Provides On-Line Operating

Manual, Liso B. Stombough
Input Amplifier and Trigger Circuit for a 500-MHz Frequency and

Time Interval Analyzer, ,fohonn l. Heinzl
Phase Digitizing: A New Method for Capturing and Analyzing

Spread-Spectrum Signals, Dovid C. Chu
Reading a Counter on the Fly
Frequency and Time Interval Analyzer Measurement Hardware,

Poul S. Stephenson
Multifunction Synthesizer for Building Complex Waveform, Fred

H. Ives
Mechanical Design of the HP 89044
Digital Waveform Synthesis IC Architecture, Mark D. Talbot
Development of a Digital Waveform Synthesis Integrated Circuit

Craig A. Heikes, /omes O. Bornes, ond Do.le R. Beucler
Analog Output System Design for a Multifunction Synthesizer,

Thomos M. Higgins, Jr.
Generating a Phase-Locked Binary Reference Frequency
Firmware Design for a Multiple-Mode Instrument, Mork D. Tolbot
Multifunction Synthesizer Applications, Kenneth S. Thompson
Testing and Process Monitoring for a Multifunction Synthesizer,

David l. Schwartz and Alon L. McCormick
Assuring Reliability
An Integrated Voice and Data Network Based on Virtual Circuits,

Robert Coockley ond Howard L. Steodmon

April 1989
An 8%-Digit Digital Multimeter Capable of 100,000 Readings per

Second and Two-Source Calibration, Scott D. Stever

measurement accuracy. The method has its restrictions and
does not ensure testabilitv of everv DUT.

References
1. D. Royle, "Rules te l l whether interconnect ions act l ike t rans-

mission l ines," EDN, June 23,1988, pp. 131-136.
2. M.R. Barber, "Timing measurements on CMOS VLSI devices

designed to drive TTL loads," Internotionol Test Conference 1 986,
Paper 4.4.
3. High-Speed CMOS, Volume 3, Motorola Semiconductor Corpo-
ra t i on ,1984 .
4. G.C. Cox, "Transmission l ine test ing of CMOS," Internot ionol
Test Conference 1987, Paper 20.1.

An 8%-Digit Integrating Analog-to-Digital Converter with 16-8it,
100,000-SampIe-per-Second Per{ormance, Woyne C. Goeke

Precision AC \roltage Measurements Using Digital Sampling Tech-
niques, Ronold L. Swerlein

Calibration of an 8%-Digit Multimeter from Only Two External
Standards, Wayne C. Goeke, Ronold L. Swerlein, Stephen B.
Venzke, ond Scott D. Stever

Josephson Junction Arrays
A High-Stability Voltage Reference
Design for High Throughput in a System Digital Multimeter, Gory

A. Ceely ond Dovid /. Rustici
Firmware Development System
Custom UART Design
High-Resolution Digitizing Techniques with an Integrating Digital

Multimeter, David A. Czenkusch
Time Interpolation
Measurement of Capacitor Dissipation Factor Using Digitizing
A Structural Approach to Software Defect Analysis, Tokeshi

Nokojo, Katsuhiko Sosobuchi, ond Todoshi Akiyomo
Dissecting Software Failures, Robert B. Grody
Defect Origins and Types
Software Defect Prevention Using McCabe's Complexity Metric,

Williom T. Word
The Cyclomatic Complexity Metric
Obiect-Oriented Unit Testing, Steven P. Fiedler
Validation and Further Application of Software Reliability

Growth Models, Gregory A. Kruger
Comparing Structured and Unstructured Methodologies in Firm-

ware Development, Williom A. Fischer, /r. ond /omes W. ,lost
An Object-Oriented Methodology for Systems Analysis and Speci-

fication, Borry D. Kurtz, Donna Ho, ond Tereso A. Wol.l
VXIbus: A New Interconnection Standard for Modular Instru-

ments, Kenneth Jessen
VXIbus Product Development Tools, Kenneth Iessen

PART 1: Chronological Index

DEcEMBER 1 989 HEWLETT-pAcxnno lounrulr 67

June 1989
A Data Base for Real-Time Appl icat ions and Environments, Feyzi

Fotehi , Cynthio Givens, Le' f . Hong, Michoel R. L ight , Ching-
Choo Liu. ond Michoel / . Wright

New Micl range Members of the Hewlet t -Packard Prer; is ion Ar-
chi tecture Compr: ter Fami ly, Thomos O. Meyer, Rus"^el l C.
Brockmonn, /efJrey G. l lcrrg is, /ohn Kel ler , ond Floy 'd U. Moore

I louble-Sided Surface Mount Process
Data Compression in a Hal f - lnch Reel- to-Reel Tape Dr ive, Mork

/ . Biunch. i , Ief l 'er l t I . Koto, ond Dovi t l J . Von Mcrren
Maxirn iz ing Tape Capaci tv by Super-Blocking, Dovid / . Vcrn

Mnren, Mork /. iiionr;fii, ond leffery I. Koto
High-Speecl L ightwave Component Analysis, Roger W. Wrrrrg,

Poul Herndu,v. Michat : l C. Hort , r rnd Gerold ine A. Clonrur j
OTDR versus OFIfR
Desigt t atrc l Operat ion of High-Frequencv Lightwave Sourt :es anr l

Rer;e ivers. l - lobr; r l I) . A/bin, Kent W. Lt :yt le. Hol l in F. Rnwson,
onr i Kennelh l ,V. Sf i r rughnessy

High-Speod PIN Infrarecl Photodetectors for HP Lightwave Receivers
Videoscope: A Nonintnrs ive Test Tool for Personal Computers,

Myrorr R. l 'u l l le r rncl Donny Low
Videosr;ope Signature Analyzer Operat ion
Neural Data Structures: Programming wi th Neurons, l . Borry

Shockleford
A New 2D Simulat ion Model of Electromigrat ion, Poul / . Morcoux,

Poul P. Merchoni , Vlodimir Norodi tsky, ond iVul f D. Rehder

August 19Bg
An Overview of the HP NewWave Environment, Ion / , Ful ler
An Object-Based User Inter face for the HP NelvWave Environ-

ment. Peler S, Showrnorr
The NewWave Object Management Faci l i ty , /ohn A. Dysort
The NewWave Off ice, Beotr ice Lom, Scot t A. Honson, ond

Anthony / . Doy
Agents and the HP NewWave Appl icat ion Program Inter face,

Glenn R. Sleorns
AI Pr incip les in the Design of the NewWave Agenl and API
An Extensib le Agent Task Language, Borboro B. Pockord ond

Chor les H. Whe. lon
A NewWave Task Language Example
The HP Ner,r 'Wave Environment Help Faci l i ty , Vicky Spi lmon

ond Eugene I . Wong
NewWave Computer-Based Train ing Development Faci l i ty , Low-

rence A. Lynch-Freshner, R. Thomos Wolson, Br ian B. Egon, ond
/ohn i . /encek

Encapsulat ion of Appl icat ions in the NewWave Environment,
Wi.lliom M. Crow

Mechanical Design of a New Quarter-lnch Cartridge Tape Drive,
Andrew D. Tophom

Reliability Assessment of a Quarter-Inch Cartridge Tape Drive,
Dovid Gi l ls

Use of Structured Methods for Real-Time Peripheral Firmware,
Poul F. Bort let t , Poul F. Robinson, Trocey A. Hoins, ond Mork / .
S imms

Product Development Using Obiect-Oriented Software Technol-
ogy, Thomas F. Kroemer

Obiective-C Coding Example
Obiect-Oriented Life Cycles

October 1989
40 Years of Chronicling Technical Achievement, Chories L. Leoth
A Modular Family of High-Performance Signal Generators,

Michoel D. McNomee ond Dovid L. Platt
Firmware Development for Modular Instrumentation, Kerwin D.

Konogo, Mork A. Stombaugh, ond Brion D. Wotkins

RF Signal Generator Single-Loop Frequency Synthesis, Phase
Noise Reduct ion, and Frequency Modulat ion, Brod E. Andersen
nnd Eor l C. Her le ikson

Fract ional-N Synthesis Module
Delay Line Discr iminators and Frequency-Locked Loops
Design Considerat ions in a F ast Hopping Vol tage-Control led Osci l -

lator , Borton L. Mclunkin ond Dovid M. Hoover
High-Spectra l -Pur i ty Frequency Synthesis in a Microwave Signal

Generator , /omes B. Summers ond Douglos R. Snook
Microwave Signal Generator Output System Design, Steve H.

Fr ied, Kei th L. Fr ies, unr i , f r ; l in M. Sirns
"Packageless" Microcin;u i ts
Design of a High-Performance Pulse Modulat ion System, Douglos

R. Snook ond G. Slephcn (, 'ur l is
Reducing Radiated Emissions in the Performance Signal Genera-

tor Fami ly, Lorry I l . Wright orrd Donold T. Borowski
Processing and Passival ion Ter;hniques for Fabr icat ion of High-

Speed inP/ lnGaAs/ lnP Mesa Photodetectors, Suson R. S. locrn
Provid ing Programnrers n ' i th a lJr iver Debug Technique, Eve M.

Tonner
HP-UX Object Module Structure
Ident i fy ing Useful HP-UX Debug Records
Solder jo int Inspect ion Lls ing Laser Doppler Vibrometry,

Cother ine A. Keely
Laser Doppler Vibrometrl'
A Model for HP-UX Shared Librar ies Using Shared Memory on

HP Precis ion Archi tecture Computers, Anostosio M. Marte l l i
User-Centered Appl icat ion Def in i t ion: A Methodology and Case

Study, Lucy M. Ber l in
Interviewing Techniques
Storyboarding Techniques
Part ia l ly Ref lect ive Light Guides for Optoelectronics Appl ica-

t ions, Corolyn F. /ones

December 1989
System Design for Compat ib i l i ty of a High-Performance Graphics
Library and the X Window System, Kenneth H. Bronstein, Dovid

, [. Srveetser, ond Wi l . l iom R. Yoder
The Starbase Graphics Package
The X Window System
Managing and Shar ing Display Objects in the Starbase/X11 Merge

System, /omes R. Andreos, Robert C. Cl ine, ond Courtney
Loomis

Shar ing Access to Display Resources in the Starbase/X11 Merge
System, Jef fR. Boyton, Sonkor L. Chokrobort i , Steven P. Hiebert ,

lohn l . Lang, /ens R. Owen, Kei th A. Morchington, Peter R.
Robinson, Michoel H. Stroyon, ond /ohn A. Waitz

Sharing Overlay and Image Planes in the Starbase/X11 Merge Sys-
tem, Steven P. Hiebert, lohn J. Lang, ond Keith A. Morchington
Sharing Input Devices in the Starbase/X11 Merge System, Ion A.

El l iot ond George M. Sochs
X Input Protocol and X Input Extensions
Sharing Testing Responsibilities in the Starbase/X11 Merge Sys-
tem, /ohn M. Brown ond Thomos / . Gi lg
A Compiled Source Access System Using CD-ROM and Personal

Computers, B. David Cothel l , Michoel B. Kolste in, ond Stephen
/. Peorce

Transmission Line Effects in Testing High-Speed Devices with a
High-Performance Test System, Roiner Plitschko

CMOS Device Measurement Results
Custom VLSI in the 3D Graphics Pipeline, Laruy l. Thoyer
Global Illumination Modeling Using Radiosity , David A. Burgoon

68 rEwrErr-pncrARD JoURNAL DEcEr\,4BER 1989

PART ?.: Subiect lndex

Subject Page/Month
A

Ac voitage measurements,

d i g i t a l
Adaptive subdivision

15/Apr.
86/Dec.
B/Apr.ADC, 16-to-28-bit

Agen t 3Z lAug .

Agi le s ignal generator 14lOct .

A i r j e t , i ead i nspec t i on 81 /Oc t .

ALC loop 34,48,49/Oct.

Algor i thm, data compression 26lJune

Algorithm, electromigration
s imu la t i on 80 {une

Algorithm, hemicube B1/Dec.

Algor i thm, mul t is lope runup 10/Apr.

Algorithm, routing 48/Feb.

Algor i thm, subsampled ac 17lApr.

Algor i thm, substructur ing B6/Dec.

Amp l i f i e r , GaAs . 41 lOc t .

Amp l i f i e r , power . 34 ,48 /Oc t .

Amplitude modulation 59/Feb.

Ana l yze r . f r equency and t ime
in te r va l 6 /Feb .

Analyzer, lightwave component . 35{une

Animat ion object 54/Aug.

Ann i ve rsa ry , 40 yea rs . 6 /Oc t .

An tenna , t uned d i po le 62 lOc t .

An t i - a l i as i ng f i l t e r s . 67 /Feb .

Ape r tu re , ADC 14 ,41 I Ap r .

Appl icat ion def in i t ion 90/Oct.

Application program interface
(APD 34 /Aug .

Application-specific encapsula-
t i on 63 /Aug .

Architecture, voice and data

network a3lFeb.

A rm ing . 9 /Feb .

Audit testing, tape drive 77lAttg.

B
Back ing s to re 30 /Dec .
Bandwidth measurements, laser . 41{une

Behavior specifications 88/Apr.
Blocking, tape drive 32{une

c
Cab ine t RF I des ign . 60 /Oc t .
Cal ibrat ion, e lectroopt ical 40,45{une
Cal ibrat ion f i rmware . 24lOct .
Calibration, two-source 22lApr.
Capaci tor d iss ipat ion factor 46iApr.
Capstan motor 75lAlug.
CBT d i sp l ay ob jec t . 52 lAug .
CBT samp le l esson . 49 /Aug .
CD-ROM, source code 50,{Dec.
C lass 7O lAp r . , 91 /Aug .
Clip list 77,231Dec.
CMOS IC test ing 61iDec.
Codewords, data compression 26{une
Color map 11/Dec.
Color map type 3S/Dec.

Comb ined mode . 11 ,34 /Dec .

Combined mode c l ipping 37lDec.
Compac t i on , t ape . 26 ,33 {une

Compara to r hyb r i d . 26 lFeb .
Complexi ty metr ic 64,66,8S/Apr.
Compound data objects 13/Aug.
Computer, midrange HP Precision

Archi tecture 18/ fune

Computer-based training 48/Aug.
Concept d iagram . . 8B/Apr.
Con ta i ne r ob jec t s " 13 ,241 Aug .

Context diagrams . B0/Aug.

Context switching 57lAug.
Continuous measurement

t echn ique 7 /Feb .

Controller, floating-point Z"llJlune
Concu r rency . 16 {une ,96 /Aug .
Converter , A-to-D, 16-to-28-bi t 8/Apr.
Coprocessor, f loat ing-point 2 l {une

Core a l i gnmen t 7 2 I A l ug .
Core input devices 39/Dec.
Crack growth, thin-tilm 82[une
Crea le p rocess 2614u9 .

Current f low s imulat ion B1l fune
Cyclomat ic complexi ty

me t r i c 64 ,66 ,85 /Ap r .

D
Dark current 69/Oct.

Data base backup 16/june

Data base data structures 9/ lune

Data base performance 15{une

Data base schema 1S/fune

Da ta base t ab les . 9 / f une

Data compression, tape drive 26lltne

Data flow diagrams BO/Aug.

Data l ink layer 45/Feb

Da ta po in te r BT lOc I .

Data structures, neural 69{une

Dc measurements, calibration 24lApr.

Dc of fset hybr id 2s lFeb.

Debug technique, dr iver 7 6 lOcI .

Decompress ion , da ta . 28 {une

Def in i t ion, appl icat ion 90/Oct.

De lay l i ne 30 ,35 /Oc t .

Deviations (frequency, time,
phaseJ 30 /Feb .

DFT tes t , ADC 40 /Ap r '

D iagnos t i c f i rmware . 2S lOc t .

Dictionary, data compression 26{tne

Dielectr ic passivat ion 7 ZlOcl .

Dielectr ics, ref lect iv i ty 99/Oct.

Di f ferent ia l l inear i ty , ADC 22lApt .

Digi ta l s ignature analysis 62{une

D ig i t a l s yn thes i s . 53 /Feb .

Digi ta l waveform synthesizer

IC s3 ,57 lFeb '

D ig i t i zed FM . 32 lOc t .

Digitizing, multimeter 39/APr.

Direct hardware access (DHA) . 11,221Dec.
Discr iminator , delay l ine 30,3ZlOct.
D i ss i pa l i on f ac to r measu re -

men ts 46 /Ap r .
Dithering 7711)ec.
D i v i ded ou tpu t sec t i on 4Z lOc t .
D i v i de r , GaAs . 40 /Oc t .
Doppler v ibrometry, Iaser 82lOct .
DOS p rog rams se rv i ce 5B /Aug .
Double-sided surface mount

process 23llune
Drawable 11/Dec.
D r i ve r debugg ing . 76 lOc t .
Dua l - s l ope ADC . 8 /Ap r .
DWSIC 53,57lFeb.
Dynamic range, lightwave

measurements . . . 50{une

E
Effect ive bi ts 39/Apr.
Eight queens problem T3lJune
Electrical-to-optical device

measurements . . . 36/ fune
Electromigration simulation

mode l Tg {une
Electrophotography, erase bar 9B/Oct.
EMI , s i gna l gene ra to r . 59 /Oc t .
Encapsulat ion . . 57,89/Aug.
Equi l ibr ium, neural network 714une
Erase ba r , LED . ^ . . 9B /Oc t .
E r ro r s , d i g i t a l ac . - . . . 18 /Ap r .
Errors, rat io measurements - 221 Apr.
Extensib le task language 35,38/Aug.

F
Faceless instruments 94/Aug.
Factor, super-blocking

advantage 344une
Fai lure, th in metal l ines 82{une
FET models 56/Oct.
Fiber optic component analysis .. 3S{une
File locking and concurrency 16/|une
F i l l e r , d i e1ec t r i c . 99 /Oc t .
F i l t e r s , CD-ROM . 53 /Dec .
F i rmware des ign . 13 /Feb .
Firmware design, mul t imeter 31/Apr.
Firmware design, synthesizer 70lFeb.
Firmware, s ignal generator 2olOct .
Float ing output ampl i f ier 69/Feb.
Float ing-point coprocessor 21{une
Flow contro l 46/Feb.
FOCUS command 47l{lug.
Form factor, illumination 80/Dec.
Forty years of HP lournal 6/Oct .
Four-color map problem 74[we
Fractional-N frequency

synthesis , . . 18,28/Oct.
Frame buf fer 1.1,211Dec.
Frame engine 44lFeb.

DECEMBER 1 989 HEWLETT-PACTNNO IOURNET 69

Frequency agi le s ignals 31,3s/Feb.
Frequency agile signal generator . 1.4lOcI.
Frequency analyzer . 6/Feb.
Frequency est imat ion 17,30/Feb.
Frequency- locked loop 27,30lOct .
Frequency modulat ion 29,32,38/Oct.

Frequency reference 6B/Feb.
Frequency response cal ibrat ion . . 27lApr.
Frequency synthesis 27 ,37lOct .
Fresnel ref lect ion . . 98/Oct.

FURPS B3 /Ap r .

G
GaAs ICs 41 /Oc t .
Ga in ca l i b ra t i on , ac . 2B lAp r .
Ga in e r ro r s 24 lAp r .
Gate arrays 3z lApr.
G a t i n g 9 / F e b .
Gener ic encapsulat ion 58/Aug.
Global i l luminat ion model ing 78/Dec.
G loba l i nh i b i t i on 7 l { une
Graded - i ndex l ens . 54 {une
Gra in s t r uc tu re . 80 {une
Graph sect ioning problem , TTlJune
Graphics accelerator 20,7 4,87 lDec.
Graphics context 71.}4lDec.
Graphics, i l luminat ion model ing . TBlDec.
Graphics resource manager

(GRM) 1 . 7 ,L2 /Dec .
Graphics subsystem, VLSI 7 4 lDec.
GRM daemon 16/Dec.
Group -V pass i va t i on . 7 1 l oc t .

H
Hash indexes T2lJune
H-bridge 53{une
Help faci l i ty 43/Aug.
Help screen structure z1.lFeb.
Hemicube algorithm B1/Dec.
Heterodyne output sect ion 44ioct .
Hierarchical block design, HBD ... 63/Feb.
High-resolut ion dig i t iz ing , 39/Apr.
High Sierra standard S2lDec.
High-speed IC testing 58/Dec.
History, HP Journal . 6/Oct.
Ho ldo f f 10 /Feb .
Hopfield neuron ... 69{une
Hopping s ignal generator 14lOct .
Hop RAM 59/Feb.
HP-HIL and testing 44lDec.
HP-HIL input devices 39/Dec.
HP Journal , 40 years . 6/Oct .
HP-UX dr iver debugging 76lOct .
HP-UX semaphores 16{une,26lDec.
HP-UX shared l ibrar ies 86/Oct.
Hysteresis 26lFeb.

I
IC testing, transmission

l ine ef fects 58/Dec.
Illumination modeling 78lDec.
Image planes 11,33/Dec.
Inguard section 31iApr.

70 HEWLETT-pAcKARD JoURNAL DECEMBEB 1 989

Inhibition 7lfiune
InPi InGaAs/InP diodes 69/Oct.
I npu t amp l i f i e r 24 lF eb .
Input areas l3 iJune
Instantaneous f requency 9/Feb.
Integral l inear i ty , ADC 1.4,22/ Apr.
Interpolat ion, t ime 4OlF eb. ,42l Apt .
I n t e r v i ew t echn iques . 92 lOc t .

J
Joints, solder, sur face mount 81/Oct.

Josephson junct ion arrays 24lApr.

J o u r n a l , H P . 6 / O c t .

K
Keyboard/HP-HIL

emulator 64lJune,44lDec.
Keyword scanner .. 27lOct.
K ink , l ase r ou tpu t 53 {une

L
Laser Doppler v ibrometry \2 lOct .
Laser measurements 4"1 l lune
La te ra l i nh i b i t i on 7 l l June
Launch, opt ical 53/June
Leads, surface mount, unsoldered . 81/Oct.
LED e rase ba r . 98 /Oc t .
Level accuracy SoiOct .
L ight guides 98/Oct.
L ight p ipes 100/Oct.
L ightwave component analysis . . . 3S{une
Lightwave sources and receivers . 52lJune
L inea r FM 32 lOc t .
L i nea r i t y , ADC , 1 . 4 ,221 Ap r .
Links, trunk and access 44lFeb.
Local izabi l i ty 47/Aug.
Locking strategy2 l lDec.

M
Mastering 54/Dec.
Masters zAlAvg.
McCabe's complexity metric

64,66,85/Apr.
Measurement objects 97 I Aug.
Memory board, roM-byte 25{une
Merge program 77lOct.
Merge system, Starbase/X1 t 6/Dec.
Messages and methods 19,89/Aug.
Microwave extender output section

. 49 /Oc t .
Microwave signal generators 14loct.
Mi l l imeter-wave analysis S/Feb.
Mixer/detector B/Feb.
Model, electromigration TglJ\te
Mode l s , FET . 56 /Oc t .
Models, termination 59/Dec.
Modular instrument systems 91/Apr.
Modular signal generators 14lOct.
Modulation transfer function,

lightwave 36,41{une
Modu la to r , Du l se . 54 /Oc t .

MOMA (multiple, obscurable,
movable, and accelerated
w indows \ 7 , 251Dec .

MPE source access system50/Dec.

MS-DOS objects 28/Aug.

Mul t i funct ion synthesizer 52lFeb.
Mul t imeter, B1/z-di1 i r . 6/Apr.
Mu l t i s l ope rundown . 9 /Ap r .
Mu l t i s l ope runup 10 /Ap r .

N
Netwo rk , vo i ce and da ta 42 lFeb .
Neural data structures 69{une
Neuron programming 69iJune
NewWave agent 32lAlug.
NewWave application program

in te r f ace (AP I) 32 lAug .
NewWave computer-based training

(CBT) 48 lAug .
NewWave encapsulation S7lAug.
NewWave environment,

ove rv i ew 6 /Aug .
NewWave help facility 43/Aug.
NewWave object management

faci l i ty (OMF) . . . 17lAUg.
NewWave Off ice 23lAug.
NewWave windows 23/Aug.
N-flops 7Dfiwe
NMOS- l l l ch i p 6z lFeb .
No i se , ADC 13 /Ap r .
Noise floor, optical measure-

men ts 4g / l une
Noise, s ignal generator 27 lOcI .
Numeric data parser . ZOlFeb.
Nussel t analog \2 lDec.

o
Obiect-based user inter face 9/Aug.
Object c lass 18,91/Aug.
Object encapsulation 89/Aug.
Obiect l i fe cycle 19/Aug.
Object l inks 10,18/Aug.
Object management facility 1.7 I Artg.
Object model 11lAug.
Object models and v iews 94/Aug.
Obiect module, HP-UX 78lOct .
Ob iec t - o r i en ted . 69 ,86 /Ap r .
Object-oriented language 93/Aug.
Object-or iented l i fe cycle 9B/Aug.
Object-oriented technology 87iAug.
Ob jec t p rope r t i es . 1B /Aug .
Object-relationship diagrams a7 I Apr.
Object ive-C 95/Aug.
Objects 70,86/Apr.
Objects, graphic 13/Dec.
Objects, NewWave 9,17lAug.
Off ice metaphor 1.21 Aug.
Off ice, NewWave 23 I Aug.
Offscreen memory 11,15/Dec.
Offset errors 23lApr.
Ohms cal ibrat ion . 2SlApr.
On-the-fly counter readings 33/Feb.
Optical device measurements 42lltne
Optical frequency-domain

reflectometry 43{une

Optical ref lection measurements
. 4Zl l :une

Ootical time-domain
reflectometry 43{une

Optical-to-electrical device
measurements ... 36/lune

Optoelectronic erase bar 9B/Oct.
Osci l la tor , fast hopping 34lOct .
Osci l la tor , YlGtuned . 39iOct .
Outguard sect ion 31/Apr.
Output system, signal generator .. 4ZlOcL
Over lay planes 11,33iDec.
Ox ide pass i va t i on TO lOc t .

P
"Packageless" microcircui ts 44l0ct .
Packets 43/Feb.
Pa rse r , command Z2 lOc t ,
Partially reflective light guides 9B/Oct.
Passivat ion, photodetectors . . . , 69/Oct.
PC/CD-ROM source access system . 50/Dec.
P -code 39 iAug .
Peak detector 48lOct .
Performance signal generators 14lOct.
Phase d i g i t i z i ng 28 lFeb .
Phase-locked binary reference

frequency 6B/Feb.
Phase- locked loop 27,45 lDct .
Phase noise 27,39lOcI .
Phase progression plot 30/Feb.
Phase modu la t i on . 59 /Feb .
Photodetectors, pin, high-speed .. s0{une
Photodetector processing 69/Oct.
Photodiode measurements 424une
Pin photodetectors . 56/ lune
Pipel ine, graphics .74lDec.
P i xe l cache 761Dec .
P i xe l p rocesso r 7 7 lDec .
Pixel value 11/Dec.
Pixmap 11lDec.
Plat form def in i t ion . 90/Oct.
Pointers, updating . 79lOcl.
Polymorphism 90/Aug.
PoTUHP-UX IPORT/RX) 86/Oct.
Power compression measurements,

l ase r , . 41 l | une
Precision Architecture computer,

midrange 184une
Precision Architecture, HP-UX

shared l ibrar ies . 86/Oct.
Premaster ing , 54/Dec.
Processor board, midrange

computer 19/ june
Program faul ts 51/Apr.
Programming with neurons 69,72llune
Progressive refinement 86/Dec.
Pulse modulat ion system 51/Oct.
Pulse modulator IC . 56/Oct.

o
Quarter-inch cartridge tape drive . 67lAug.
Query/debug lTlJute

R
Radiosity 79lDec.
Ray tracing 7BlDec.

Reading storage, mul t imeter 37lApr.
Receivers, lightwave S2lJrne
Rea l - t ime da ta base . 6 {une
Real-time firmware 79lAug.
Recogniz ing code qual i ty 65/Apr.
Reference frequency 68/Feb.
Reference voltage 28lApr.
Ref lect ion in l ight guides 98/Oct.
Reflection measurements,

opt ical 42lJute
Reflection sensitivity measure-

ments, laser 41l lune
Ref lect iv i ty , d ie lectr ic g8iOct .

Refract ive index 98iOct .
Reliability, tape drive 74lAng.
Rel iabi l i ty , IC 79{une
Reliability, software 7:clApr.
Rendering 11/Dec.
Resist ive div ider, IC test ing 62/Dec.
Reso lu t i on , ADC . 13 ,39 /Ap r .
Responsivity, electrooptical

dev i ce 40 {une
Resul t obiects 99/Aug.
Return loss measurements,

opt ical 44[tne
Reusabi l i ty 83/Apr.
Reverse power protect ion 50/Oct.
RF s ignal generator . 14iOct .
RFI, s ignal generator . 59/Oct.
Rout ing, network . . .471Feb.

s
Samp l i ng 9 /Feb .

Sampl ing, equivalent t ime 16/Apr.

SA/SD and design process S4iApr.

Scan conve rs i on , . . z S lDec .

Scan paths 64/Feb.

Semaphores "l6lJlune,1-7lDec.

Sequencer IC 38/Feb.

Shared libraries, HP-UX 86/Oct.

Shared memory 86 lOc1., '1.1,L2 lDec.

Shar ing cursors27lDec.

Shar ing fonts 27lDec.

Shar ing objects 1 6/Aug.,14lDec.

Shar ing the color map 2BlDec.

Signal generators 74lOct .

Signal handling, shared libraries . 88/Oct.

Signature analysis 62lJlune

Simulation, electromigration, 79{une

Single-Ioop frequency synthesis
. . . . 16,3g/Oct.

Slope responsiv i ty . 40{une

Slot 0 Module .. 93,96/Apr.

Snapshots 27lAttg.

Software defect analysis 50/Apr.
Software defect causes s9iApr.

Software defect data collection ... 57lApr.

Software defect perspectives 57lApr.

Software defect prevention 64iApr.

Software defect data validation .. 58/Apr.

Software defect types 62lLpr.

Software failure rate 71l{pr.

Software process improvement ... 65/Apr.

Software productivity 81/Apr.

Software release goals 77lApr.

Software reliability 75/Apr.

Software test tool 584une

Solder jo int inspect ion 81/Oct.
Source code access system 5OiDec.
Sou rce code , l ack o f . 76 lOc t .
Sources, lightwave S2{une
Spectra, lead v ibrat ion B3/Oct.
SPUs, HP Precision Architecture . 18/|une
SRX graphics subsystem 74lDec.
Stacked screens mode 34/Dec.
Starbase 7 ,B7lDec.
State net 89/Apr.
State transition diagram 80/Aug.
Storyboard techniques 9s iOct .
S t r i p f i l e , 77 l oc t .
Str ip program 77lOcl .
Structured test ing 83iAug.
Structured analysis and

structured design 54,80/Apr.
Structured methods 79lAug.
Subsampl ing, synchronous 16/Apr.
Substructuring 84/Dec.
Supe r -b l ock i nC . 32 {une
Surface mount leads, unsoldered. 81/Oct.
Surface mount process,

double-sided 2l{we
Switching engine 44lFeb.
Symbol ic debug, dr iver 76lOct .
Synthesized signal generators 14loct.
System analysis 86/Apr.

T
Tape cart r idge mechanics 69/Aug.
Tape drive, %-inch 67lAug.
Tape drive, data compression 26{une
Tape head wear 74lArtg.
Task au toma t i on . 34 /Aug .
Task language, agent 35,38/Aug.
Task language parser 40/Aug.
Tear/bui ld engine 44lFeb.
Temperature distribution,

thin-film 81{une
Terminat ion models, IC test 59/Dec.
Test plan 7?lApr.
Test process 71. lApr.
Test script 58{une
Test ing, Starbase/X11 Merge 4ZlDec.
Thermal contro l , iaser 52lJune
Throughput, multimeter 31/Apr.
Time interval analyzer . 6/Feb.
Time to failure, thin metal

l i nes 82 l l une
Time var iat ion dispIay 1 1/Feb.
Tokens 2L lOc t .
Track densi ty 7OlAug.
Track-and-hold circuit 19/Apr.
Track seeking 72lArtg.
Transform engine 7\ [Dec.
Transform, time-domain 38/June
Transmission line effects,

IC test ing 58/Dec.
Transparency75,771Dec.
Traveling salesman problem T5iJune
T r i gge r c i r cu i t . z4 lFeb .
T ranspa ren t co l o r 37 lDec .
Troubleshoot ing, HP 3OOO 50/Dec.
Tuned dipole antenna 62loct .
Tup les T i June

DECEN,4BER 1 989 HEWLETT-PACKARD JOURNAL 71

Turbo SRX graphics
subsys tem ' I2 ,74 lDec.

U
UART, custom 36/Apr.
Un i t t es t i ng 69 /Ap r .
Unsoldered leads, surface mount . 81/Oct.
User-centered appl icat ion

de f i n i t i on 90 /Oc t .

v
Vec to red i n t e r rup t s . 73 lFeb .
VCO, fast hopping . 34/Oct.
VCO, Y IG- Iuned . l l 9 /O r ; t .
Vibrat ion spectrum, SMT leads . . . B3/Oct.
V ib rome t r y , l a se r 82 lO t : 1 .
V ideo f eed th rough . 58 /Oc t .
V ideoscope S8 / June
Video s ignature analyzer 62lJune

Views 20/Aug.
V i r t ua l c i r cu i t s . 43 /Feb .
V i r t ua l i n s t r umen ts . 96 /Aug .
V ISTA 93 /Aug .
V i sua l t ype 12 ,35 /Dec .
VLS I , g raph i cs 741Dec .
Voice and data netrvork 42lFeb.
Void format ion, e lectro-

m ig ra t i on B1 / l une
Vol tage referent ;e, h igh-stabi l i ty . 28lApr.
VMEbus 91/Apr.
Vscope 59/June
VXIbus 91/Apr.
VX Ibus deve lop rnen t t oo l s 96 /Ap r .

w
Waveform analysis l ibrar l ' 47lApr
Wave i r npeda r r ce . 64 /Oc t

PART 3: Product Index

HP E1400A VX Ibus Ma in f r ame . Ap . .
HP E1404A VX Ibus S lo t 0 Modu le Ap r .
HP E1490A VXIbus Breadboard Module Apr.
HP E14s5A VX Ibus Deve lopmen t So f twa re . Ap . .
HP 3000 Se r i es 935 Compu te r . June
HP 3458A Mu l t ime te r Ap r .
HP 5364A Microwave Mixer/Detector Feb.
HP 5371A Frequency and Time Interval Analyzer Feb.
HP 79s0XC Tape D r i ve June
HP 8644A Syn thes i zed S igna l Gene ra to r . Oc t .
HP 8645A Agi le Signai Generator - . . . - Oct .
HP 8665A Syn thes i zed S igna l Gene ra to r . Oc t .
HP 87 O2A L igh twave Componen t Ana l yze r . f une
HP 8904A Mult i funct ion Synthesizer Feb.
HP 9000 Mode l 8gS Compu te r . f une
HP 9000 Series 300/800 Turbo SRX 3D Graphics Subsystem . Dec.
HP 9145A /+ - I nch Ca r t r i dge Tape D r i ve . Aug .

June
fune
fune
Dec.

HP B34O0A L igh twave Sou rce June
HP 83401A L igh twave Sou rce June
HP 83402A L igh twave Sou rce June
HP 83403A L igh twave Sou rce | une
HP 834108 L i gh twave Rece i ve r . June
HP 83411A L igh twave Rece i ve r . f une
HP 98646A VMEbus I n te r f ace . Ap r .
HP NewWave Environmenr Auq.
HP Real-Time Data Base June
HP S ta rbase Graph i cs L i b ra r y . Dec .
HP V ISTA Aug .
X W indow Sys tem Ve rs i on 11 Dec .

Chakrabart i , Sankar L. . Dec.
Chu , Dav id C . . Feb .

C l i ne , Robe r t C . . Dec .
Coack ley , Robe r t . Feb .
Conrad, Gerald ine A. . june

Crow , W i l l i am M. . Aug .

Curt is , G. Stephen Oct .
Czenkusch , Dav id A . . . , . Ap r .

PART 4: Author lndex

Akiyama, Tadashi Apr.

A lb i n , Robe r t D . . f une
Andersen, Brad E. Oct .

Andreas, James R. Dec.

Barnes, James O. Feb.

Ba r t l e t t , Pau l F . . Aug .

Be r l i n , Lucy M . . Oc t .

Beuc le r , Da le R Feb .

Bianchi , Mark f fune

72 rewren-pacrARD JoURNAL DEcEr\,iBER 1989

HP 11BB9A RF In te r f ace K i i
HP 11890A Lightwave Coupler
HP 11891A Lightwave Coupler
HP 82000 IC Evaluat ion Svstem

Windows, NewWave 23lAug.
WYSIWYG 10 /Aug .

x
X dr iver inter face tXDi) 9,12/Dec.
X 1 1 8 i D e c .
X server 6,12lDec.
X Window System . . 8/Dec.

Y
YIG- tuned osc i11a to r . 39 /Oc t .

z
Z-buf fer 75,761Dec.
Z-ca<:he 76/Dec.
Zero-dead-t ime counters 1t i ,33/Feb.

Day , An thony I Aug .
Dysa r t , John A . . Aug .

E g a n , B r i a n B . . A u g .
E l l i o t , I a n A . . D e c .

Fa teh i , Feyz i June
Fiedler , Steven P. Apr.
F i sche r , W i l l i am A . ,] r . . Ap r .
F l e t c h e r , C a t h y , . O c t .
F r i e d , S t e v e R . . O c t .
F r i e s , K e i t h L . . O c t .
Fu l l e r , I an] Aug .

G iem, | ohn Ap r .
G i l g , Thomas l Dec .
G i l l s , Dav id A , , 9 .
G i vens , Cyn th i a June
Goeke , Wayne C . . Ap r .
G rady , Robe r i B . . Ap . .

Ha ins , T racey A . . Aug .
Hanson, Scot t A. Aug.
Ha rg i s , Je f f r ey G . . June
H a r t , M i c h a e l G . . J u n e
Heikes, Craig A. Feb.
Heinzl , fohann J. Feb.
Helmso, Bennie E. Oct .
He r l e i kson , Ea r l C . . Oc t .
He rnday , Pau l . June
Hiebert , Steven P. Dec.
H igg ins , Thomas M . , J r Feb .
Ho , Donna Ap r .
H o n g , L e T . . J u n e
Hoover, David M. Oct .

I v e s , F r e d H . . F e b .

Jencek , John 1 . . Aug .

Jessen , Kenne th . Ap r .

Jones , Ca ro l yn F . . Oc t .

J o s t , J a m e s W . . A p r .

Ka l s te i n , M i chae l 8 . . Dec .
Kanago , Ke rw in D . . Oc t .
Ka to , Je f f e r y J June
Kee l y , Ca the r i ne A . . Oc t .

Ke l l e r , John f une
Kraemer , Thomas F . . Aug .

K ruge r , G rego ry A . . Ap r .

K u r t z , B a r r y D . . A p r .

Lam, Bea t r i ce Aug .

L a n g , J o h n , . . D e c .

Lea th , Cha r l es L . . Oc t .

L e y d e , K e n t W . . f u n e
L i g h t , M i c h a e l R . . i u n e
L i u , C h i n g - C h a o . J u n e
Loomis , Cou r tney Dec .

Low , Danny June
Lynch-Freshner, Lawrence A. Aug.

March ing ton , Ke i t h A . . Dec .
Marcoux , Pau l J . . June
Mar te l l i , Anas tas i a M . . Oc t .
McCabe , Thomas l Ap r .
McCorm ick , A lan L . . Feb .
Mc funk in , Ba r t on L . . Oc t .
McNamee , M i chae l D . . Oc t .
M e r c h a n t , P a u l P . . J u n e
M e y e r , T h o m a s O . . J u n e
M o o r e , F l o y d E . . J u n e

Naka jo , Takesh i Ap . .
Na rod i t s ky , V lad im i r . f une
N imor i , Te r rance K - Feb .

O w e n , f e n s R . . D e c .

Packa rd , Ba rba ra B . . Aug .
Pea rce , S tephen J . . Dec .
P l a t t , D a v i d L . . O c t .
P l i t s c h k a , R a i n e r . D e c .

Rawson, Rol l in F. lune
Rehde r , Wu l f D June
Rob inson , Pau l F . . Aug .
Robinson, Peter R. Dec.

Rus t i c i , Dav id J Ap . .

Sachs , Geo rge M . . Dec .
Sasabuch i , Ka t suh i ko . Ap r .
Schneider, Richard Feb.

Schwartz, David J. Feb.
Shack le fo rd , J . Ba r r y . June
Shaughnessy , Kenne th W. June
Showman, Peter S. Aug.
S i m m s , M a r k J . . A u g .
S i m s , J o h n M . . O c t .
S loan , Susan l une , Oc t .
S m i t h , D a v i d E . . A p r .
Snook , Doug las R . . Oc t .
S p i l m a n , V i c k y . A u g .
S tambaugh , L i sa B . . Feb .
S tambaugh , Ma rk A . . Oc t .
S teadman , F l owa rd L . . Feb .
Stearns, Glenn R. Aug.
S tephenson , Pau l S . . Feb .
S teve r , Sco t t D . . Ap r .
S t royan , M i chae l H . . Dec .
Summers, James B. Oct .
Swee tse r , Dav id J Dec .
Swee tse r , V i c t o r i a K . . Ap r .
Swer l e i n , Rona ld L . . Ap r .

T a l b o t , M a r k D . . F e b .
T a n n e r , E v e M . . O c t .
Thayer, Larry J. Dec.
Thompson , Kenne th S . . Feb .
Topham, And rew D . . Aug .
Tu t t l e , My ron R . . June

Van Maren , Dav id f . . June
Venzke , S tephen B - . Ap r .
Vogen , Andy l une

W a i t z , J o h n A . . D e c .
W a l l , T e r e s a A . . A p r .
W a r d , W i l l i a m T . . A p r .
Watkins, Br ian D. Oct .
Watson, R. Thomas . . . Aug.
Wechs le r , Ma rk . Feb .
Whe lan , Cha r l es H . . Aug .
Wong , Eugene I Aug .
Wong , Roge r W. . June
Wright , Larry R. Feb. , Oct .
Wr i gh t , M i chae l I . . June

Yode r , W i l l i am R . . Dec .

DECEN,lBER 1 989 HEWLETT-PACKARD JOURNAL 73

Gustom VLSI in the 3D Graphics Pipeline
VLSltransform engine, z-cache, and pixelprocessor chips
widen bottlenecks in the pipeline to allow the HP 9000 Series
300 and 800 TurboSRX graphics subsystem to deliver
enhanced performance compared to the earlier SRX
design.

by Larry J. Thayer

RODUCTS FOR DISPLAYING 3D GRAPHICS on en-
gineering workstations have been appearing at an
ever-increasing rate over the last few years. Products

of each succeeding generation are much more interactive
and have signif icantly more capabil i t ies than earl ier ones.
Fueling the fast-paced change are new algorithms, better
architectures, and most important, advances in VLSI (very

large-scale integration) processing and design.
Within HP, perhaps the f irst use of a custom VLSI chip

for computer graphics appl icat ions was in a graphics dis-
play for a desktop computer introduced in 1981. The chip
accelerated vector drawing on HP 98458 Computer dis-
plays. Our f irst 3D product, the HP 98700A, introduced in
1985, drew fast wireframe images with the aid of special
commercial ly avai lable video RAM chips. These chips al-
lowed the raster display to be refreshed at the same time
the image was changing.

HP's f irst sol ids modeling graphics subsystem, the HP
9000 Series 300 and 800 SRX, was introduced in 1986. I t
uses a proprietary HP process INMOS-III) to build chips
for floating-point operations (essential for fast 3D graphics)
and for the scan conversion process (polygon and vector
drawing).1 Another proprietary process (LTCMOS) is used
for a chip that caches pixels, thus allowing multiple pixels
to be changed per RAM cycle.2 The upgrade system for the
SRX, the TurboSRX, introduced in 1988, uses even mote
VLSI for increased performance and functionality.

Custom VLSI is the technology of choice for producing
interactive 3D graphics for several reasons:
r VLSI devices are a capable source of the very high com-

nost SPU Gfaphios Slrb3yelem . :

74 newrerr-pecrARD JoUFNAL DECEt,4BER '1989

putation rates needed for fast, interactive graphics. (The
scan converter chip used in both the SRX and the Tur-
boSRX is capable of performing over 300 million addi-
t ions per second.)

r Data f low is pipel ined, with each point in the pipel ine
having a particular function. VLSI chips can be tailored
to each function.

I The low-cost potential provided by large-scale integra-
tion makes interactive 3D graphics capability available
in a workstation that an engineer can afford.
This article describes how the 3D graphics pipeline of

the SRX was analyzed, and how custom VLSI was used in
the next-generation product, the TurboSRX, to improve the
overall graphics performance.

Pipeline Stages
Graphics workstations contain a data pipeline for dis-

playing user graphics data bases (see Fig. 1J. The source
data is stored in the host system memory, typically in a
display list format. This list is simply a file containing a
hierarchical list of the graphics primitives needed to draw
the image. First in the pipeline is the system CPU, which
reads the display list and sends commands to the graphics
subsystem. Using the main system CPU for display list
processing minimizes system cost and allows the size of
the display list to be Iimited only by the virtual memory
space of the processor.

Next in the graphics pipeline is the transform engine
block, which resides in the graphics subsystem and consists
of one or more microcodable processors (called transform

Fig. 1. The 3D graphics pipeline
in the HP 9000 Series 300 and 800
T u r boS RX g r aph i cs subsystem.

engines). The transform engine block performs matrix mul-
tiply calculations for positioning the image in three-dimen-
sional space, clips the image to the viewing window, cal-
culates polygon vertices for parametric surface commands,
and applies lighting calculations for realism.

When the transform engines have finished all necessary
calculations, they send the polygon and vector endpoints
(in integer device coordinates) to the scan converter. The
function of the scan converter is to draw the individual
polygons and vectors into the frame buffer where they can
be viewed. In the scan conversion process, each pixel in
the polygon is calculated individually to determine its x,
y, z, red, green, and blue values. The x and y values deter-
mine the pixel's location on the screen, the color values
allow smooth shading of colors, and the z values are sent
to the z-buffer for hidden-surface removal.

After the pixels have been calculated, a dither circuit
operates on the color values to provide a greater number
of apparent colors, thus allowing true-color images with
as few as eight graphics planes. (When 24 planes of frame
buffer memory are available, dithering is not used.J Trans-
parency is implemented by drawing alternate pixels of the
transparent surface, a technique known as "screen door
transparency." The technique gets its name from the screen-
door-like pattern used to determine which pixels to draw.

Z-buffering is a general-purpose approach to hidden-sur-
face removal. The z-buffer is simply RAM in which t0 bits
are allocated for each pixel on the screen. It works by com-
paring the z value (depth) of the pixel being drawn to that
of the pixel already present at that location, if any. If the
new pixel is closer, it is drawn to the frame buffer and the
z value is updated to that of the pixel being drawn. If it is

farther away, the pixel is not drawn and the z-buffer is not

updated.

Transform Scan Dither/ Z-Buffer
Engine Gonversion TransParencY

SRX

Fig,2, Relative performance of 3D graphics pipeline stages
for small polygons.

Comparative Performance
Because the SRX was the first product of its caliber, there

were many unknowns about how the product would be
used and how it would perform. Since then, much has
been learned from our customers and from our own
analyses about what features are commonly used and what
sizes of polygons are typically drawn. For the purpose of
illustration, we will examine two kinds of polygons: small
polygons (defined as being 20 x 20-pixel unconnected
quadrilaterals) and large polygons (defined as being larger
than 200x200 pixels). The performance metric for small
polygons is polygons per second, and large polygons are
measured in pixels drawn per second.

Figs. 2 and 3 show the relative performance of different
stages in the pipeline. It is important to keep in mind that
since the graphics architecture is organized as a pipeline,

the performance of the system is determined by the slowest
block in the sequence. Note that for small polygons the
transform engine block limits the performance on the SRX,
with the z-buffer being the next limiter. For large polygons,
the z-buffer is the primary culprit, but the dither transpar-
ency circuit is right behind.

It was clear from examining the data that to improve
performance significantly for both cases, it would be neces-
sary to change more than one functional block.

Translorm Engine
Each transform engine consists of a microcodable proces-

sor and floating-point chips. (In both the SRX and the Tur-
boSRX, NMOS-III floating-point chips are used.) Because
of the many intricate, sophisticated algorithms necessary,
it was decided that for the TurboSRX this function should
be implemented in the same general-purpose fashion as in
the SRX. The approach taken was to use multiple higher-
speed transform engines to gain performance. Product
packaging limitations prevented a faster discrete imple-

Transform Scan Oither/ Z-Butler
Engine Conversion Transparency

sRx

Fig. 3. r9e/atlve performance of 3D graphics pipeline stages
for large polygons.

c
o
Ee"
o
N

=]
o

o
32"
o
o-
o
.I
o.
o

l t '
o
o
N

;
6
CE
o
.I
o-

C')

=E t"
o
o
N
X
o
N

o
E 2 x
IE

o
ttr
-b
o
a
t,
! l r -
o
o

o
I

f

DEcENiBER 1 989 HEWLETT,pAcKARD JoURNAL 75

mentation using bit-sl ice hardware, so an NMOS-III VLSI
chip was designed to enable three improved transform en-
gines to f i t into the product. I t was dubbed TREIS, which
stands for TRansform Engine In Si l icon. Integration pro-
vides both reduced size and increased performance.

Each transform engine contains the ful l set of microcode,
so any transform engine can execute any graphics opera-
t ion. One transform engine acts as the master, distr ibuting
graphics commands among the three transform engines.
Any command can therefore be distr ibuted to the next free
transform engine, including the master.

The result is more than a threefold gain in the raw
hardware performance in the transform engine stage of the
pipel ine for small polygons (see Fig. 2). By adding im-
proved microcode and software and some higher-level
functions, performance levels up to ten t imes that of the
SRX can be achieved. One higher-level function, quadri-
lateral mesh, al lows the vert ices of adjacent quadri laterals
to be transformed, cl ipped, and l ighted a single t ime, result-
ing in a net reduction of processing by almost a factor of
four.

TREIS (see Fig. a) is a custom NMOS-III chip containing
about 170,000 transistors, including 1536 bytes of pointer
RAM and an ALU, in a 272-pin pin-grid array (PGA) pack-
age. I t outputs a 16-bit microcode address and reads a 68-bit
wide microcode word with highly pipelined architecture.
It improves performance over the SRX transform engine
by combining some two-state activi t ies into one state. Like
the SRX transform engine, it connects to HP-proprietary
f loating-point math chips through a 32-bit f loating-point
bus for accelerated transformation, cl ipping, l ighting, and
parametric surface calculations. The connection to the
polygon-rendering chip is through a double-buffered RAM
containing polygon and vector vertex addresses, z values,
and color data.

Fig. 4. fRElS (TRansform Engine ln Silicon) chip.

76 lewrerr-pecrARD JouRNAL DEcEMBER 1989

Z-Buffer
Once the transform-engine bottleneck was improved, the

next performance l imitat ion for small polygons was the
speed of the z-buffer. The SRX's z-buffer is in the non-
displayed part of the frame buffer. (The frame buffer holds
2O4Bx 1024 pixels, but only 1280 x 1O24 can be displayed
at a t ime. Most of what is not displayed can be used as a
z-buffer.) While this approach minimizes the cost of low-
end systems, maximum performance cannot be obtained
when frame buffer and z-buffer accesses cannot be done at
the same t ime.

When drawing with the z-buffer enabled, the SRX must
read the z value from the frame buffer, compare the z value
of each pixel with the z value present at that location, write
the new z value back into the frame buffer i f necessary,
and write the pixels into the frame buffer i f necessary.
Using pixel caching al lows each access to handle up to
eight pixels (the size of a frame buffer "t i le") simultane-
ously.

Most of the z-buffer overhead was el iminated by provid-
ing an optional dedicated z-buffer, which al lows z-buffer
RAM cycles and frame buffer RAM cycles to occur in paral-
lel . In this dedicated z-buffer is another custom chip, the
z-cache, which al lows mult iple z values to be fetched and
stored in a single RAM cycle, increases the t i le size, and
performs comparisons of z values at a rate twice as fast as
the SRX.

The z-cache is an LTCMOS standard-cell design contain-
ing about 3700 gates, packaged in a 68-pin plast ic leaded
chip carrier. It is similar in design and size to the pixel

cache.2 It performs fast z comparisons and allows multiple
z-buffer operations to take place in a single RAM cycle.
One chip per plane is used in the z-buffer.

Fig. 5. Pxel processor chip.

Pixel Processor
The z-cache chip is still not enough to prevent the z-buf-

fer from limiting overall performance, particularly for large
polygons.

In the SRX, whenever a new pixel needs to be written
into a tile other than the one accessed by the previous tile,
the polygon-rendering chip is held from drawing any more
pixels until the new z tile is read. A third custom chip,
the pixel processor, was added between the polygon-ren-

dering chip and the z-buffer. It removes that latency by
issuing an early warning when a new tile will be needed.
This signal is provided far enough in advance of the pixel

that the z values can be fetched from the z-buffer before
the pixels are drawn. To match the output of the polygon-
rendering chip with the z-buffer better, a FIFO buffer was
added at the output of the pixel processor. This way, both
the polygon-rendering chip and the z-buffer can operate
more efficiently.

The pixel processor (see Fig. 5) is a custom NMOS-III
chip containing about 110,000 transistors in a 168-pin PGA
package. As mentioned earlier, it contains performance im-
provement features such as the fast dither and transparency
operations, the FIFO control, and the early z read signal
to prevent slowing down the polygon-rendering chip. In
addition, it contains three 1024-byte gamma-correction
ROM tables for more accurate color representation, and
window clipping operations for up to 32 movable, obscur-
able, overlapping, accelerated graphics windows. A
pipel ine valve inside the chip al lows fast window opera-
tions without emptying the graphics pipeline. All pixel
operations inside the pixel processor are performed at the
polygon-rendering chip's pixel output speed, so the
graphics throughput does not slow down when using any
of its features.

Notice in Figs. 2 and 3 that these z-buffer enhancements
improve that portion of the pipeline for small polygon per-
formance by about 50% and for large polygons by a factor
of three.

Dithering and Transparency
With z-buffer operations streamlined, there was one more

stage in the pipeline left to be improved. Dithering and
transparency in the SRX are performed with discrete TTL

logic. While this does not show up as a performance limiter
in the SRX because it is faster than the z-buffer (see Figs.
2 and 3), it would have become the limiting factor in the
TurboSRX with the fast z-buffer. Instead of leaving the
dither and transparency circuits in TTL, it was decided to
include those functions in the pixel processor. This both
improves the dither/transparency performance by a factor
of two for large polygons (Fig. 3), and improves the reliabil-
ity and cost of the overall system.

Conclusions
Figs. 2 and 3 reveal that no stage of the TurboSRX

pipeline is significantly slower than the others for either
small or large polygons. Since the pipel ine is fair ly well
balanced, it might appear that higher performance would
require that all parts of the pipeline be replaced, requiring
a large amount of product development time and cost. How-
ever, as VLSI technology improves, so does the potential
improvement of 3D graphics subsystems. Several areas of
VLSI technology have been improving lately, including
speed, density, packaging, and design productivity. Fur-
thermore, the experience gained on earlier products has
pointed the way toward new and better algorithms and
architectures. Future graphics products will clearly have
to take advantage of these latest advances to meet growing
customer expectations.

Acknowledgments
Many individuals contributed to the TurboSRX product.

The design teams of the individual chips were as follows.
TREIS: Dave Bremner, Bill Cherry, Dan Griffin, Jim fackson,
Gerry Reynolds, and fohn Young. Z-cache: Andy Goris.
Pixel processor: Dale Beucler, Bi l l Freund, Monish Shah,
the author, and Iames Stewart.

References
1. R.W. Swanson and L.J. Thayer, "A Fast Shaded-Polygon Re-
nderer," Proceedings of SIGGRAPH '86, Dallas, Texas, August
1986, in Computer Grophics, Vol . 21, no. 4, August 1986, pp.

95 -101 .
2. A. Goris, B. Fredrickson, and H. Baeverstad, "A Configurable
Pixel Cache for Fast Image Generation," Computer Grophics ond

Appl icot ions, Voi . 7, no. 3, March 7987, pp.24-32.

DECE|VIBER 1989 HEWLETT PACKAFD JouRur 77

Global lllumination Modeling Using
Radiosity
Radiosity is a complementary method to ray tracing for
global illumination modeling. HP 9000 TurboSRX graphics
workstations now offer three illumination models: radiosity,
ray tracing, and a local illumination model.

by David A. Burgoon

I N COMPUTER GRAPHICS image generation systems,

I an i l lumination model can be invoked local ly or glob-
I ally. When invoked locally, only incident light from
light sources and object orientation are considered in deter-
mining the intensity of light reflected to the observer's eye.
Invoked globally, the light that reaches an object by reflec-
tion from or transmission through other objects in the scene
environment is also considered.

Local illumination models are popular because they pro-
duce reasonably realistic rendering and can be computed
at interactive rates using hardware acceleration techniques.
Global models are usually used when rendering realism is
of primary importance. Traditional global illumination
modeling methods are extremely computationally inten-
sive. As a result, interactivitv is usuallv sacrificed for the
sake of realism.

One of the most familiar local illumination models is
that of Phong.l Turner Whitted2 enhanced the Phong model
for global use in ray tracing by accounting for the light
reflected or transmitted from other objects in the environ-
ment.

In the ray tracing procedure, an intersection tree is con-
structed by tracing a ray from the observer's eye through
each pixel into the environment. At each surface intersected
by the ray, two branches are added to the tree, representing
the spawned reflected and transmitted rays. Each surface
intersection is represented by a node in the tree. This pro-
cess is repeated recursively. The final pixel intensity is
determined by traversing the tree starting with the leaves
and working toward the root, computing the intensity con-
tribution of each node using the illumination model. The
final pixel intensity is the sum of all ofthese contributions.

Fig. 1. Ihese gears were gener-
ated on the HP ME Series 30 mod-
eling, design, and drafting system.
The ray trcced image was ren-
dered using nonuniform rational
B-sp/rnes. lt is a polygonal repre-
sentation with 3084 polygons and
12 partial polygons.

78 gewrerr,pncxARD JoURNAL DECEMBER 1 989

Fig. 1 shows an example of a 3D image generated using
ray tracing.

Ray tracing is an important rendering method. It has
produced some of the most realistic images ever seen to
date. However, it is not without its deficiencies.3'a In the
ray tracing method, realistic shadows are difficult to pro-
duce. In particular, penumbras and shadow envelopes are

seldom seen in ray traced images. Most ray tracing render-
ers produce sharp shadow boundaries only.

Most ray tracing systems limit themselves to modeling
only point light sources, that is, light sources assumed to
emit light that originates from a single point in space. Light
sources whose emission comes from a finite area are not
readily treated by the method. Only some of the more recent
and exotic methods, such as distributed ray tracing and
ray tracing with cones, attempt to deal with this limitation.

The reflection models used in ray tracing are usually
empirical and approximate. They are often chosen based
on subjective results rather than physical laws of energy
equilibrium. This disallows the modeling of effects such
as color bleeding, where diffuse reflection from one surface
causes a soft colored shadow to be seen on another.

Another problem with ray tracing is that it is inherently
slow. The computational expense of recursively tracing
rays for each pixel on a screen with reasonable resolution
(e.g., 1280 by 1.024 pixels) can be prohibitive. Furthermore,
since the scan conversion and global illumination model-
ing functions are very tightly coupled, any hardware op-

timized for scan conversion that may be available is not

used. The view dependent nature of the ray tracing al-
gorithm also detracts from the interactivity of the system
employing it. Each change in the viewing transformation
requires that the entire ray tracing process be repeated to

render the new view.
Perhaps the most fundamental flaw of the ray tracing

method is that it limits itself to modeling intraenvironment
reflections in the specular direction only. Global modeling

of diffuse effects is ignored.

Radiosity
The radiosity method, introduced by Goral and others,s

corrects most of the above deficiencies, but at the expense
of introducing some restrictions of its own. The method

correctly models the interaction of light between reflecting
surfaces if the surfaces are restricted to be perfectly diffuse.
It replaces the constant ambient term in Phong's model
with an accurate global model. Radiosity has a fundamental
energy equilibrium basis, and is derived from methods used
in thermal engineering. Fig. 2 shows a 3D image generated

using the radiosity method.
In the radiosity method, a (possibly hypothetical) enclo-

sure is constructed around the environment to be rendered.
The surfaces or walls of the enclosure completely define
the illuminating environment. They consist of light sources
and reflecting walls. One or more of the surfaces of the en-
closure may be fictitious (e.g., an open window). Each of
the surfaces is assumed to be an ideal diffuse reflector, an
ideal diffuse emitter, or a combination of the two (Fig. 3).

The radiosity method deals with the equilibrium of
radiant energy within the enclosure. The light (or radiosity,
which is measured as energy/time/area) leaving a surface

i is Bt. It consists of direct emission Er from the surface
plus the reflected portion of light arriving at the surface.
The light arriving at i, H1, is found by summing the contribu-

tions from the other N- 1 surfaces, and from surface i if it
is concave. Note that there is no need to treat the emitted

Fig. 2. fhls radiosity image of a
cathedral with eight bays of win-
dows and columns was done for
two bays, and the remaining bays
were generated by a step-and-
repeaf process. lt took 7 mtnutes
of preprocessing on an HP 9000
Model 350 to build the data base
and subdivide the polygons (mesh-
ing), and 12 minutes per step for
40 sfeps (using progresslve re-
finement) to generate the image
(5 minutes and B minutes, respec-
tively, on an HP 9000 Model 370).
There are 9916 polygons (14,316
after meshing), 26 area lights, and
four point lights.

DECEI'/IBER 1989 HEWLETT-PACxnRo lOUnur 79

and reflected energy separately because they are both per-
fectly diffuse and therefore indistinguishable to the ob-
server. Unlike ray tracing, the history or direction of a ray
is lost after reflection from a surface.

The total radiosity leaving a given surface i is therefore

B i : E i * p r H r ,

where B, : radiosity of surface i . This is the total rate at
which radiant energy leaves the surface in
terms of energy per unit t ime per unit area
(watts per square meterJ.

Ei : rate of direct energy emission from surface i
per unit t ime per unit area.

pi : ref lect ivi ty of surface i . This represents the
fraction of incident light that is reflected
back into the hemispherical space surround-
ing sur face i .

Hi : incidentradiantenergyarrivingatsurfacei
per unit time per unit area (watts per square
meterJ.

Ht is the sum of all the light leaving the N surfaces of
the enclosure that "see" surface i . The fract ion of the
radiant energy leaving a surface j that impinges on surface
i is specified by the form factor or configuration factor F,,.
The energy per unit time arriving at surface i is therefore

HrAi:
, I t ,O,O,, ,

(2)

tr8,F,, lTotal lmpinging Energy
per Unit Area)

where ,t1 is the area of surface i. Dividing through by A,
we have

(3)

(4)

t5 l

(1)

r.'r A,F,,u, : lB, -i.-

According to the reciprocal nature of form factors,5

B 1

B2

A1F1; : A;F; i

Therefore, H, is

Hi : i u,a,,.
i = r

Thus the radiosity at a surface i is

Bi : Er * p, I B,F,,. (6)
j = 1

This may be rewritten as

B i - p i , ! . B iF , i : E , , 17a)

or , fo r i : 1 ,

] : '^

r[] [:l1 -pNFNN
(a)

[1 -p rFr , -p rFn . . . -p rFr rv]

Considering all N surfaces i we have

(7b)

l -p rF , r , -p tFn

Pz.Fzt t-o:Ut,

-ppF^-, pNrFN,

-P rF rN

-o:"*

Ei (Emission)

Surface i p,tr8,F,, lTotat Reftected
Energy per
Unit Area)

(b)

Fig. 3. Radlosity relationships. (a) Copyright @ 1984 by
Goral, Torrance, Greenberg, and Battaile. IJsed with permis-
sion. (b) Copyright O 7986 by Greenberg. lJsed with permis-
slon.

80 rewrerr-pacrARD JouRNAL DEcEMBEF 1989

(7 c)

This system of N linear equations with N unknown val-
ues B, has parameters Ei, pi, and F1;, which must be known
or calculated for each surface. The E, are nonzero for sur-
faces that provide illumination to the enclosure. Such sur-
faces could represent a diffuse area light source or panel,
or the first reflection of a directional light source from a
diffuse surface. If all of the E, are zero, then there is no
illumination and all of the B, are zero.

In general, the E1 and pi are functions of the wavelength
of the light. They are usually chosen to represem an average
value over a bandwidth of radiation, typically red, green,
and blue. Once the form factors are calculated. the above
matrix equation is solved numerically for the B values for
each of three sets of E1 and p, parameters.

The above equation is well-suited to solution using an
iterative Gauss-Siedel technique6 because it is diagonally
dominant, that is, the sum of the absolute values of the
nondiagonal coefficients in each row is less than the abso-
lute value of the main diagonal term. The solution usually

)4,
tn"oio"i tvl

converges in six to eight iterations.
The aforementioned surfaces generally are not the same

as the surfaces of the representation chosen for the geomet-
ric model of the scene. For example, if objects are described
using polygons, the polygons are usually subdivided into
patches or elements (i.e., smaller polygons)' These patches
become the surfaces of the enclosure.

Once the radiosity for each primary color for each patch
has been found, it is mapped onto the vertices of its as-
sociated polygon so that the vertex radiosity (color) values
can be bilinearly interpolated across the polygon using
either Gouraud shadingT or object-space interpolation. A
good way to do this is to set the radiosities at the vertices
of patches that are interior to a given polygon to the average
of the adjacent patch radiosities and then extrapolate out-
ward to the polygon vertices.

The process of image generation using the radiosity
method can be summarized as follows:
r Take the input geometry and subdivide it into patches'
r Calculate form factors.
r Solve for the 81 for each primary color,
r Extrapolate the B1 to polygon vertices and render.

Once the form factors are calculated, they need not be
recalculated if colors (p) or light sources [E) change. AIso,
as long as the geometry of the objects remains static,
dynamic views of the scene can be generated by merely
rerendering. This can be highly interactive on a workstation
such as the HP 9000 Model 835 TurboSRX, which has
dedicated hardware optimized for polygon rendering.

Form Factor Calculation
We now consider the calculation of Fii, the fraction of

the energy leaving surface i impinging on surface i (Fig' +)'
Because our surfaces are assumed to be perfectly diffuse,
the form factor is purely geometrical in nature' It depends
only on the shape, size, position, and orientation of the
participating surfaces.

For nonoccluded environments, the form factor from one
differential area (i) to another (j) is given by

(10)

From the symmetry of this equation we can derive the
reciprocal relationship given in equation 4. Some other
important properties of form factors are:
r From the law of conservation of energy:

,l,F',
: t' (1 1)

r For any surface that does not see itself (planar or convex):

Fi i : 0. (12)

The Hemicube Algorithm
For occluded environments, equation 10 becomes

F, , :F^,^ , : * | . f
g+#14(HrD)dAjdAi , (13)-' .-'--t A; J4, Ja, frr-

where the Boolean function HID takes on the value 1 or 0
depending on whether dA1 can see dA;. This double area
integral is difficult to solve analytically for general cases.
An area integral, which is a double integral itself, can be
transformed via Stokes'theorem into a single contour inte-
gral, which can then be evaluated numerically, but at con-
siderable computational expense. Numerical approxima-
tion techniques can provide a more efficient means to com-
pute form factors for general complex environments. The
hemicube algorithm8 employs such a numerical method
and also addresses how to deal with the HID function.

Inner lntegral Approxlmation
If the distance between the two patches i and j is large

compared to their areas, and if they are not partially
occluded from one another, the integrand of the inner in-
tegral of equation 13 remains almost constant over the area
,A,1. If we let K approximate the inner integral we have

Fij : Fn,a,

Integrating over area A;, the form factor to a finite area or
patch is

n COSd; COSd,
FdR,ai :

| f faa; .
(s)

The form factor between finite surfaces (patches) is defined
as the area average and is thus

Fi i :Fa,a, :
* , I I**#t4dA,dAi.

cosdicosdi
O^t. (1)

Tr-

Thus finding a solution for the inner integral K, the differ-
ential-area-to-finite-area form factor, equation 9, will pro-
vide a good approximation for the form factor from patch
to patch. If the patches are close together relative to their
size, or if there is partial occlusion, the patches must be
subdivided into smaller patches until equation 9 provides

Faa,a^, :
totd'"uot4

dR,. (B)
?Ir-

-+ l, KdAi :
"t: "

= I,

Flg.4. Form factor geometry. Copyright O 7986 by Green-
berg. Used with permission.

DEcEMBER 1 989 HEWLETT-PAcxnno lounnnL 8'l

a good approximation.

The Nusselt Analog
To see how to evaluate the form factor integral numeri-

cal ly, Nusselt 's geometric analog'to the form factor integral
is helpful (Fig. 5).

Each differential area patch has its own view of the en-
vironment, which is the hemisphere of direct ions sur-
rounding its normal. For a finite area, the form factor is
equivalent to the fract ion of the circle (which is the base
of the hemisphere of directions) covered by projecting the
area onto the hemisphere and then orthographical ly down
onto the circle.

The easiest way to see that this analogy correctly de-
scribes the form factor integral is to think of it in terms of
sol id angles and projected areas. The area of plane A that
is seen by or projected onto plane B is the area of A t imes
the cosine of the angle between the normals of the two
planes. It is equal to the area of the shadow that A would
cast onto B. The solid angle can be thought of as a general-
izat ion of the planar angles with which we are famil iar.
Recall that a planar angle d, measured in radians, is defined
to be equal to the length of the arc subtended by the angle
divided by the radius r of the circle containing the arc. Since
the total circumference of a circle is 2rr, there are 2n radians
in a circle. Similarly, a solid angle <,r, measured in stera-
dians, is defined to be the area subtended by the solid angle
divided by the square of the radius of the sphere containing
the area. Since the total area of a sphere is 4rr2, there are
4n steradians in a sphere (and 2tr steradians in a hemi-
sphere). Stated another way, one steradian subtends a unit
area of a unit sphere.

Now, returning to our inner integral approximation,
equation 9, the solid angle dto that subtends the infinites-
imal area dA, is (see Fig. 6J:

Fig. 5. fhe Nusseit analog. The form factor is equal to the
fraction of the base of the hemisphere covered by the projec-
tion. Copyright @ 7985 by Cohen and Greenberg. IJsed with
permission.

82 tEwren-pncrARD JoURNAL DEcEMBER 1 989

(1 5)

where S6a, is the portion of the area of the sphere with
radius r that is projected by dA; in the direction of r. Since
dA; is infinitesimally small, this projected area is planar,
and is given by cos {1dA;. Thus, d<o is

Sr o .
____::_:L

r-

cosdi dA'

rt
(i 6)

Now, returning to the unit hemisphere of the Nusselt
analog, the area on the unit hemisphere projected by dA; is

(so l idang le) (rad ius2) = do(1 'z) : dor :
cos4 jdA '

. 117)

The projection of this area onto the base of the unit hemi-
sphere is

(cos@1)(do) - cosdi cosdidAi
uBl

Taking the ratio of this area to the total area of the base of
the unit hemisphere (z) we have, as before, the differential
form factor

F . cosd,cosd idA,
rda,da,: ----------;-

Trr-
(1e)

Integrating these differential form factors over A, and
then taking the area average of this integral gives us the
double area integral expressed in equation 10 for the form
factor Fi;. Using the inner integral as an approximation is
equivalent to using the center point of patch i to represent
the average position of patch i, constructing a unit hemi-
sphere around this point, and summing the differential

patch i

Fig. 6. fhe area dAj is taken to be the area of patch j that
rs vlslb/e through the solid angte da. Adapted from Wallace.lo
Used with permission.

\ r----\.r---
r' ___,_-__l

Area \- -------=L/
Normaf \\---7L,

\-----7-_/

form factors.

Delta Form Factors
To approximate the inner integral, the hemisphere of

directions can be divided into discrete solid angles Aco,

and a delta form factor can then be calculated:

The Hemicube
It would be handy if we could choose a more convenient

surface than a hemisphere to proiect the patches onto. From

the Nusselt analog it can be seen that any two patches in

the environment that project onto the same set of discrete

areas of the hemisphere will have the same form factor

value. Said another way, any two areas that are seen

through the same set of delta solid angles will have the

same form factor. In Fig. 7, E is the set of discrete areas

and A, B, C, and D all have the same form factor. Consider

area D. If we allow D to be part of the top part of a cube

sunounding the patch i of interest, we can determine the

form factor from patch i to the patch with area A by calculat-

ing the form factor to the patch on the cube with area D

from patch i. Thus, instead of projecting directly onto the

unit hemisphere, we can first project onto a "hemicube"

and then calculate the form factor of the intermediate patch

that has area equal to the proiected area of the original

patch.
More specifically, an imaginary cube is constructed

around the center of the patch i of interest (Fig. B). The

environment is then transformed to set patch i's center at

the origin (eye) with the patch's normal coincident with

the positive Z axis (assuming a left-handed coordinate sys-

tem). The cube is sized so that the perpendicular distance

from the center of the patch to the surface of the cube is

1. In this orientation, the aforementioned unit hemisphere

is surrounded by the upper-half surfaces of the cube, the

lower half being below the horizon of the patch. One full

face, facing in the +Z direction, and four half faces, facing

in the tX and lY directions, replace the hemisphere.

These faces are divided into square discrete areas (pixels)

at some resolut ion, usually between 50 x 50 and 100 x 10

and the environment is then projected onto the five planar

faces.
The beauty of this scheme is that the mathematics and

algorithms involved in these projections are well-known:

the same clipping, projection, and hidden surface removal

techniques used for projection of an environment onto a

raster display screen can be used here. (Hardware op-

timized for these operations can also be employed') The

view direction is set equal to each of the +2, +X' -X'

+Y, and -Y axes, and every other patch in the environ-

ment is projected onto each of the five "screens," which

are the faces of the hemicube perpendicular to each of these

five directions. Each full face of the cube covers a 90" frus-

tum as viewed from the center of the cube. This creates

c l ipp ing p lanes o tZ : X ,Z : -X ,Z : Y , and Z : -Y

that can be used in a simple Sutherland-Hodgman clippertt

streamlined to handle 90" frustums. Each projected patch

can then be scan converted or rasterized to determine

which patch's projection covers a given pixel. If two

patches project onto the same hemicube pixel, a Z-buffer

algorithm can be used to decide which patch is seen in the

discrete solid angle represented by the pixel. However,

unlike the conventional Z-buffer algorithm used for image

rendering, intensity data is not stored for each pixel' In-

stead. the frame buffer is used as an item buffer to store

an integer identifying the patch that is seen by the pixel

represented by the item buffer address.

After determining which patch j projects onto each

(20)

The form factor F,, can then be approximated by summing

the delta form factors covered when projecting patch j onto

the unit hemisphere surrounding the center of patch i. If

all the patches in the environment are proiected onto the

hemisphere, discarding the projections of the more distant

patches in the case of two or more patches with overlapping

proiections, the sums of the delta form factors covered by

these proiections give the form factors from all patches to

the patch represented at the center of the hemisphere. This

procedure intrinsically includes the effects of hidden sur-

faces.
To make this procedure practical, a convenient means

of dividing the surface of the hemisphere into discrete areas
(subtended by the discrete solid angles Aor) is needed. The

delta form factors for each of these discrete areas could be

precalculated and stored in a lookup table. An evaluation

can then be made as to which patch projects onto a given

discrete area. For a given patch j, the form factor calculation
problem is reduced to determining through which of the

discrete solid angles Aor surface j is visible. Unfortunately,

for a hemisphere, it is difficult to devise a method of creat-

ing equal discrete areas and a set of linear coordinates to

describe the locations of these areas uniquely.

Fig. 7. Areas with identical form factors. Areas A, B, C' D'
and E all have the same form factor. Copyright @ 1985 by
Cohen and Greenberg. Used with permisston.

cosdrcosdrAAi
A l - i i : - - - - - - - - - a' ' Tr-

DEcEMBER 1989 HEWLETT-PACxnno ..touRrum 83

hemicube pixel, a summation of delta form factors for each
pixel covered by patch j determines the form factor from
patch i to patch j at the center of the hemicube. That is,

R
F " : ! A F o ,

q = 1
(27)

where AFo is the delta form factor associated with hemicube

An imaginary cube is created around the cenler of a patch.
Every other patch In the envlronment is proiected onto the
cube,

(b)

Flg. 8. (a) The hemicube. (b) Projection of the envircnment
onto the hemicube. Copyright @ 7985 by Cohen and Green-
berg. Used with permission.

84 gewlerr-pecxARD JoURNAL oEcEi,4BER 1989

pixel q, and R is the number of hemicube pixels covered
by projection of patch j onto the hemicube surrounding
element i.

This summation is performed for each patch in the envi-
ronment to form a complete row of N form factors. Then
the hemicube is positioned around another patch i and the
process is repeated.

The delta form factor values represented by each hemi-
cube pixel are easily calculated from the delta form factor
equation (20) and can be stored in a lookup table. Because
of symmetry, this table need only contain values for one
eighth of the top face and one half of a side face of the
hemicube (Fig. 9).

In summary, the hemicube algorithm provides two main
contributions. It provides a very practical method of nu-
merically approximating the form factor integral, and pro-
vides a method of properly accounting for the effects of hid-
den and occluded surfaces at minimal additional exDense.

Substructuring
The hemicube algorithm, as presented above, has some

problems. Areas in a scene with high intensity (radiosity)
gradients (shadow boundaries and penumbra, for example)
may be poorly represented, particularly when the patches
are large relative to the area over which the radiosity gra-
dient occurs. To remedy this, the areas of surfaces with
high radiosity gradients must be subdivided into finer and
finer grids of patches. This presents two problems: how to
increase the number of patches without incurring signifi-
cant additional computational cost, and how to decide
which areas of the scene should be subdivided. These prob-
lems were addressed in a paper by Cohen and others.12

The solution of the radiosity simultaneous equilibrium
equations using the Gauss-Seidel technique is O(N'z), that
is, the number of calculations required is of order N2, where
N is the number of patches used to describe the scene. The
calculation of the form factors is also O(N'z). If the first
problem is not addressed and N is naively increased, the
computational costs can be prohibitive.

To remedy this situation we borrow a concept from en-
gineering mechanics known as substructuring, where the
solution for local stress behavior is based on the global
structure response to a coarse solution. Applying this no-
tion to the radiosity problem, we subdivide the patches
that are too large into a total of M elements (according to
criteria to be discussed later), leaving K unsubdivided
patches. It is assumed that each element has a constant
radiosity, but that these element radiosities vary across the
patch. Next, we would like to be able to find the radiosities
of the elements using a solution for the radiosities of the
original patches and avoiding a full O((M+K)2) solution,
somehow applying the solution for the global patch
radiosities to the elements.

Element Radiosltles
To see how to do this, assume that patch i has been

subdivided into R elements. We can then represent 81, the
radiosity of patch i, as the average over the area of the
patch of the element radiosities:

\I
I

- R

Br : fi], noeo. e2)

From the definition of the radiosity of an element given
in equation 6 we know that

Bo : Eo * ,o,i, t,uo,. (23)

Substituting equation 23 into equation 22,wehave

B i : +'i(o * o,,i n,ro,)a"

* A,i',1t,!,.,o")

* o,,it,(i, l,

. R

rtt: -\rF,

Qaa)

(24c)

(a)

Top of Hemicube: r : r / F 1 f + t

cos s, : sg5 d'

cos d =-J-
\ / x ' + y ' t ' l

cos d, cosdi
AForm Factor = --- -; r AA

:
tr(x, ++Tif aA

z

micube
xel AA

2 ' r .

1 -

/o, Y l
Side of Hemlcub.t , = lfiV + t

Distributing, we have

n R
*+ i / , iB ,F^ ,Aq) e4b)B, : 4j o?., EoAo * -\- o?, (oo,i t'a*^,

If we assume the emission and reflectivity of the patch
are constant, then Ei : Eq and pi: Pq' Also, if the global
radiosities Br or€ dssumed constant for each element over
the surface of each patch, we have

B' : + r,F,oo

and

. n c a =
z

r V l V - t
'1

c o s o) : :

AFormFactor = tot?;ot* to

2 ^ "
= _ _ _ a h

T (y ' + z ' + 1 1 '

Flg. 9. Derivation of delta form factors. Copyri ght @ 1 985 by
Cohen and Greenberg. Used with permission.

B i = E i

By comparing equation 6, the quantity in parentheses
above in equation 24d is easily seen to be the patch-to-patch
form factor expressed as the area-weighted average of the
element-to-patch form factors, where the elements are sub-
divisions of patch i. Thus

FniAo

Each of the element-to-patch form factors Fo; can be found
using the hemicube algorithm. Then the patch-to-patch
form factors F1; are calculated using equation 25. The stan-
dard system of simultaneous radiosity equations (7c) can
then be solved to yield the patch radiosities in O(N2) time'
The resulting patch radiosities are more accurate than those
that would have been obtained without subdividing the
patches into elements. This is because the expression for
Fii given by equation 25 represents a discrete numerical
method for approximating the outer area integral of the
form factor double area integral given in equation 13. Recall
that in the original hemicube algorithm the outer integral
was taken to be unity because we restricted the patches to
be small relative to the distances that separate them. We
now can remove that restriction by using equation 25, but
placing the same restriction on the elements that make up
a patch.

r"^"). QAd)

Hemicube
Pixel AA

(25)

(b)

DEcEMBER 1 989 HEWLETT-pAcraRo .touRNnl 85

Once the patch radiosities have been calculated, the
radiosity for each element q can be found using the basic
equation for the radiosity of an element, equation 23.

In short, subdivision of patches into elements and use
of the above equations provides two main advantages over
naive use of a finer patch resolution. First, the local vari-
ations of intensity within a patch can be accurately approx-
imated without having to solve the global radiosity equa-
t ions on an element level. Second, the radiosity solut ion
on the patch level is more accurate because it better approx-
imates the patch-to-patch form factors.

Substructuring Algorithm
The fol lowing are the major steps involved in employing

these optimizations in a rendering algori thm:
L. Form a hierarchical descript ion of the environment con-

sist ing of surfaces, subsurfaces, patches, and elements.
2. For each element, find the form factor to each patch

using the hemicube algori thm, and store the results in
anMxNmatrix (M : numberof elements, N : number
of patches).

3. Compress this matrix into an NxN patch form factor
matrix using equation 25.

4. For each of the primary color bands-red, green, and
blue-form and solve the set of N equations in N un-
knowns for the patch radiosities using the Gauss-Seidel
iterative technique and equation 7c.

5. Compute the M element rhdiosities for each element q
using equation 23, the patch radiosit ies, and the ele-
ment-to-patch form factors computed in step 2.

6. Calculate element vertex radiosities from the radiosities
of the elements adjacent to the vertex.

7. Linearly interpolate the vertex radiosities across the ele-
ments using Gouraud shading or object-space interpola-
t ion.

Adaptive Subdivision
We now address the criteria to be used in deciding how

to partition the scene hierarchically down to the element
level. Ideally, the element mesh should be densest in re-
gions of high intensity gradients. Cohen's papert' says that
a reasonable first guess must be provided by the user as to
which areas are likely to have high intensity gradients.
These areas include areas in shadow and areas near light
sources. Then the intensities of adjacent vertices found in
step 6 can be compared. If the change in intensity is greater
than some threshold value, the elements adjacent to that
vertex should be recursively subdivided until the intensity
change is below the threshold. The algorithm is then recur-
sively repeated, beginning at step 2.

Cohen used a simple binary subdivision, where each
rectangular element is divided into four new elements.
This preserves the original patch's geometry and allows
most of the previously computed element-to-patch form
factors to be reused. The only change that needs to be made
to the original M x N element-to-patch form factor matrix
to subdivide a particular element i is to remove row i from
the matrix and insert four new element rows. [Of course,
the hemicube algorithm must be used to calculate the ele-
ments of the new rows). This object-space subdivision
technique is analogous to the Warnock algorithm,ls which
subdivides polygons to perform hidden surface removal.

86 lEwrerr pAcKARD JoURNAL DECEMBER 1989

Progressive Refinement
Perhaps the most significant improvement to the radios-

ity method is the algorithm based on the technique of pro-
gressive refinement devised by Cohen and his colleagues.la
This algorithm has two main advantages over those we
have described so far.

First, it provides renderings of the environment that are
early approximations of the final energy-equilibrium solu-
tion. This has the advantage of allowing the user to see
advance previews approximating the final correctly ren-
dered scene without having to wait for the full O(N,) solu-
tion to equation 7c. At each step of the progressive refine-
ment approach, the rendering of the scene gracefully con-
verges to the ful l solut ion. The user can interactively stop
this progression when the rendering looks good enough.
In most cases, a useful image is produced in O(N) t ime.

The second advantage of the progressive refinement ap-
proach is a reduction in storage and start-up computational
costs. The previous algorithms require that all form factors
be precalculated before the Gauss-Seidel solution begins.
This requires O(N2) storage. For reasonably complex envi-
ronments, this cost can be significant. For example, an
environment of 50,000 patches will require a gigabyte of
storage.ra In the progressive refinement algorithm, form
factors are calculated on the fly to reduce the form factor
storage requirements to O(N) and eliminate the associated
startup computational costs.

The progressive refinement algorithm can be thought of
as a restructuring of previous methods, and differs from
them primarily in two ways. First, the radiosity of all
patches is updated simultaneously instead of one at a time
during each iteration. Second, patches are processed in
sorted order according to their energy contribution to the
environment.

To gain an insight into how this is possible, consider
row i of equation 7c {i.e., equation 6). This equation may
be thought of as one that determines the light leaving patch
i by gathering in the light from the rest of the environment
(F ig . 10) .

A single term from the summation in equation 6 deter-
mines the contribution of patch j to the radiosity of patch
i. that is.

Contr ibution of B, to AB1 : 4B;F1; . Q6)

The progressive refinement method reverses this process
by considering the contribution made by patch i to the
radiosity of all other patches. The reciprocity relationship
(equation 4) provides the basis for this reversal. The con-
tribution of the radiositv from patch i to the radiositv of
patch j is

Contr ibutionof BitoABj :
CS,F,i* (27)

The total contribution to the environment from the
radiosity of patch i is determined by calculating the above
equation for all patches j.

A key fact about this reformulation is that the radiosities
of the patches j in the environment are updated using form
factors calculated via a single hemicube placed at patch i.

Thus, each step of the iteration no longer requires that all

of the form factors Fi; be known in advance. Each step of

the solution now consists of placing a single hemicube

around a patch i and adding the contribution from the

radiosity of that patch to the radiosities of all other patches,

calculating form factors as needed. In effect, we are shoot-

ing light from patch i out into the environment rather than

gathering the light from the environment received at patch

i (Fig. 10). For a more detailed description of this iterative

shooting algorithm, consult the literature.la

To arrive at the final solution as quickly as possible, we

capitalize on the fact that if the patches i with the largest

contribution to the environment are processed first, the

final value for the radiosity of patch i, which is the sum

of these contributions, will be approached earlier. Stated

intuitively, those patches radiating the most light energy

should be treated first, since they have the greatest effect

on the illumination of environment. This energy will tend

to come from those patches having the largest product BtAi'

Accordingly, the progressive refinement algorithm is im-

plemented by always shooting first from patches for which

the difference AB1A1 between the previous and current es-

timates of unshot radiosity is greatest. This usually results

in most light sources being processed first, followed by the
patches that receive the most light from the light sources,

and so on. Thus, when solving in sorted order, the solution

tends to proceed in nearly the same order as light would
propagate through the environment. Solving in sorted order

usually yields a useful estimate of the final solution in less

than a single full iteration, substantially reducing compu-

tation costs.ln Fig. z was rendered using a progressive re-

finement technique.

Summary and Conclusions
The radiosity global illumination method combats many

of the deficiencies of ray tracing. Radiosity methods pro-

duce excellent penumbras, shadow envelopes, and color

bleeding effects. Area light sources are accurately modeled'

The radiosity model is "correct" in the sense that it is based

on laws of physics (energy equilibrium because of conser-

vation of energy). In the radiosity method, illumination

modeling is decoupled from scan conversion and render-

ing. Finally, radiosity algorithms are view independent.

This allows a high degree of interactivity for static geometry

once the preprocessing is complete.
Despite these advantages, radiosity also has some disad-

vantages with respect to ray tracing. Rendering using the

full radiosity solution is slow (although proponents claim

it is faster than ray tracing because it is view independent).

Also, specular reflections, transparency, and translucency

are not modeled.
Radiosity and ray tracing are complementary methods.

No one method models reality perfectly (although radiosity

advocates point out that most natural environments are

predominantly diffuse). Recent research involves combin-

ing aspects of both methods. For example, in a very recent

paper by Wallace and his colleagues,lT a ray tracing

technique is used to compute form factors, instead of the

hemicube algorithm. Also, techniques have been recently

proposed for producing specular highlights along with

global diffuse illumination components.lo'15'16
There is still a fair amount of research that needs to be

done before an interactive global model can be offered that

models an environment perfectly without having to sac-

rifice diffuse components, as in ray tracing, or specular

highlights, as in radiosity. However, the illumination mod-

els that have been developed to date are extremely useful

and should be made available to users of graphics worksta-

tions. Accordingly, Hewlett-Packard chose to become the

first workstation vendor to offer radiosity-based illumina-

tion modeling as well as the more traditional methods. In

)uly 1989, HP released its Starbase Radiosity and Ray Trac-

ing software, which integrates into the Starbase display list

support for both radiosity and ray tracing on high-end Tur-

Gathering

x x x x x x x x x

Shooting

x
x
x
x
x
x
x
x
x

x
x
x
x
x
X
x
x
x

F o r a l l j :

Bi = Bi + B, (p1 F;i)

where : F i i = F ; ;A , A '

Fig. 10. Gathering versus shoot-
ing. Gathering light through a
hemicube allows one patch
radiosity to be updated. Shooting
lightthrough a single hemicube al'
lows the entire environment's
radiosity values to be updated
simultaneously. Copytight @ 19Bg
by Cohen, Chan, Wallace, and
G reenberg. U sed w ith pe rmission.

DEcEMBER i 98s HFWLETT-pAoxnno lounNer 87

x
x
x
x
x
x
x
x
x

x
x
x
x
X
x
x
x
x

Patch iPatch i

N

B i = E i + ! (y r ; F i ;) B 1
i 1

boSRX workstations. This gives the graphics programmer
a choice of three illumination methods: local illumination
based on an enhanced Phong model, global illumination
based on anti-aliased ray tracing, and global illumination
using progressive refinement radiosity. Applications using
the Starbase display list can now be written to provide the
user with the widest possible variety of photorealistic ren-
dering.

We have presented a tutorial summary of the theory and
algorithms of the radiosity method that have appeared in
the literature over the last few years. We have done so with
the hope that the reader will gain an intuitive feel for the
method, some of the improvements that have been made
to it, and the advantages that may be gained from it. No
attempt has been made to discuss the particulars of HP's
implementation, which makes use of the most recent ad-
vances. tn '17

Acknowledgments
The author would like to thank those who helped make

possible the graduate study that produced this tutorial.
Specifically, I would like to thank the Hewlett-Packard
Company for providing financial support through the HP
educational assistance program, and my advisor, Dr, Gary
f. Herron, for teaching me the basics of computer graphics
and motivating my study of radiosity methods. Thanks are
also in order to foan Bushek and Darel Emmot, who re-
viewed drafts of this paper, and to those members of the
R&D Laboratories of HP's Graphics Technology Division
who offered suggestions for the improvement of the oral
presentation of this tutorial. Lastly, I would like to thank
the ACM for sponsoring the SIGGRAPH conferences that
introduced me to radiosity and have served to keep me
excited about the field of computer graphics.

References
1. B.T. Phong, Il.luminotion for Compr4ter Generoted Imoges, phD
Dissertation, University of Utah, 1979.
2. T. Whitted, "An Improved Illumination Model for Shaded Dis-
play," Communicqtions of the ACM, June 1980.
3. D,P. Greenberg, "Ray Tracing and Radiosity," Stote of the Art
in Imoge Synthesis, course notes, SIGGRAPH 1986.
4. D.P. Greenberg, M.F. Cohen, and K.E. Torrance, "Radiosity: A
method for computing global illumination," The Visuaj Computer,
Vol. 2, no. 5, September 1986.
5, C.M. Goral, K.E. Torrance, D.P. Greenberg, and B. Battaile,
"Modeling the Interaction of Light Between Diffuse Surfaces,"
ACM Computer Grophics (Proceedings of SIGGRAPH rcB).
6. C.F. Gerald, App.lied Numericol Anolysis, 2nd Edition, Addi-
son-Wesley, 1978, pp. 776-177.
7. D.F., Rogers, Procedurol Elements for Computer Grophics,
McGraw-Hil l , 1985, pp. J2g-92s.
L M.F. Cohen and D.P. Greenberg, "The Hemi-Cube: A Radiosity
Solution for Complex Environments," ACM Computer Grophics
(Proceedings of SIGGRAPH 19S5.), Vol. 19, no. 3, fuly 19S5, pp.
31-40.
9. R. Shegel and J.R. Howell, Thermoi Rqdiotion Heot Tronsfer,
Hemisphere Publishing Corporation, 1978.
10. I.R. Wallace, A Two-Poss Solution to the Rendering Equotion:
A Synthesis of Ray Tracing and Rodiosity Methods, MS Thesis,
Cornell University, Ianuary 1988.
11. D.F. Rogers, op cit , pp, 169-179.
12. M.F. Cohen, D.P. Greenberg, D.S. Immel, and P.J. Brock, "An
Efficient Radiosity Approach for Realistic Image Synthesis," IEEE
Computer Grophics and Applicotions, March 1986. pp. 26-3b.
13. D.F. Rogers, op cit , pp. 240-259.
14. M.F. Cohen, S.E. Chen, f.R. Wallace, and D.P. Greenberg, "A
Progressive Refinement Approach to Fast Radiosity Image Gener-
ation," ACM Computer Grophics fProceedings of SIGGRAPH
1988.), Vol. 22, no. 4, August 1988, pp. 75-84.
15. D.S. Immel, M.F. Cohen, and D.P. Greenberg, "A Radiosity
Method for Non-Diffuse Environments," ACM Computer Grophics
fProceedings o/ SIGGRAPH 1986J, Vol. 2O, rro, 4, August 1986,
pp . 133-142.
16. J.R. Wallace, M.F. Cohen, and D.P. Greenberg, "A Two-Pass
Solution to the Rendering Equation: A Synthesis of Ray Tracing
and Radiosity Methods," ACM Computer Grophics fProceedings
of SIGGRAPH 1987), Yol. 27, no. 4, fuly 1987, pp. 311-320.
17. J.R. Wallace, K.A. Elmquist, and E.A. Haines, "A Ray Tracing
Algorithm for Progressive Radiosity," ACM Computer Grophics
fProceedingjs of SIGGRAPH 19s9).

1

Hewlet t -Packard Company, 3200 Hi l lv iew
Avenue, Palo Al to, Cal i forn ia 94304

ADDRESS CORRECTION REQUESTED

Bulk Rate
U.S. Postage

Paid
Hewiett-Packard

Company

To subscr be. change your address, or delete your name irom our mail ing l lst, send your request lo Hew et1-Packard
Journal 3200 Hi lview Avenue, Pa o Alto. cA 94304 u.s A Inc ude your otd address label it any A low 60 daysCHANGE OF ADDRESS:

oYoJ-dc /6

